Cómo Resolver Gráficamente un Modelo de Programación Lineal con IORTutorial

Los modelos de Programación Lineal han sido motivo de amplio estudio en nuestro Blog y en esta oportunidad queremos presentar a nuestros usuarios una herramienta computacional sencilla e intuitiva llamada IORTutorial (Interactive Operations Research Tutorial) la cual nos permite resolver gráficamente modelos de Programación Lineal con 2 variables de decisión, además de proporcionar informes de sensibilidad para complementar la interpretación de los resultados alcanzados.

Para ello consideremos el ejemplo descrito en el artículo Cálculo del Intervalo de Variación del Lado Derecho que conserva la Base Óptima que permitirá al lector contrastar los resultados alcanzados en dicho ejemplo con el procedimiento alternativo que presentamos a continuación a través del uso de IORTutorial. El ejemplo en cuestión que considera 2 variables de decisión y 5 restricciones (considerando las 2 de no negatividad) es el siguiente:

modelo-lineal-cambio-lado-d

La implementación computacional se muestra en el siguiente tutorial disponible en nuestro canal de Youtube que detalla Cómo Resolver Gráficamente un Modelo de Programación Lineal con IORTutorial:

resolucion-grafica-iortutor

Cabe destacar que los resultados que se observan en el Informe de Sensibilidad (o Análisis de Sensibilidad) son equivalentes a los obtenidos en la resolución con Solver de Excel como se muestra en la imagen a continuación:

informe-lado-derecho-solver

Cálculo de la Probabilidad de un Número de Llegadas en un Tiempo Determinado utilizando la Distribución de Poisson

Cuando los clientes llegan a un servicio de forma totalmente aleatoria (es decir, no hay forma de pronosticar cuándo va a llegar alguien) la función de densidad de probabilidad para describir la cantidad de llegadas durante un tiempo determinado se representa por la Distribución de Poisson y automáticamente la distribución del tiempo entre llegadas sigue una Distribución Exponencial según lo expuesto en el artículo Propiedad de Falta de Memoria o Amnesia de la Distribución Exponencial.

En este contexto la fórmula que permite calcular la probabilidad exacta de n llegadas dentro de un período T es la siguiente:

probabilidad-poisson

Consideremos por ejemplo un taller que se dedica a labores de reparación y que la llegada de éstos diariamente se comporta de forma aleatoria con una tasa de 10 trabajos diarios. ¿Cuál es la probabilidad de que no lleguen trabajos durante una hora cualquiera bajo el supuesto que el taller opera 8 horas al día?.

probabilida-cero-llegadas-p

Notar que \lambda =\frac{10}{8}=1,25[\frac{trabajos}{hora}]. Es decir, la probabilidad de no recibir trabajos durante una hora cualquiera es aproximadamente a un 28,65%.

Asumamos ahora una nueva situación. Un proceso que tiene una tasa promedio de llegada de 6 clientes por hora (\lambda =6[clientes/hora]) y se desea evaluar cuál es la probabilidad de que lleguen exactamente 0, 1, 2,…,n clientes en un intervalo de tiempo de 0,5 horas (30 minutos). El siguiente vídeo proporciona una simulación de dicho escenario:

En el gráfico, el área amarilla, por ejemplo, significa exactamente la probabilidad que 3 personas lleguen en las 0,5 horas. El área amarilla más el área roja, por ejemplo, significa la probabilidad de que lleguen 2 o 3 personas en los 30 minutos.

Adicionalmente haciendo uso del software Geogebra y su herramienta cálculos de probabilidad, se puede representar la Distribución de Poisson para los parámetros descritos anteriormente de forma de obtener rápidamente los resultados para distintos números de llegadas (notar que la Distribución de Poisson es discreta).

distribucion-poisson-geogeb

Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab

Los métodos de pronósticos de relaciones causales establecen que el comportamiento o variación de una variable de interés se puede explicar a través de una o más variables que se presume tienen un efecto significativo sobre ella. Tal sería el caso de si por ejemplo se intenta explicar las ventas de casas en un país a través de variables como la tasa de interés promedio para créditos hipotecarios, PIB per cápita, subsidios del estado para adquisición de nuevas viviendas, crecimiento demográfico, entre otras.

Ejemplo de una Regresión Lineal Múltiple

En el siguiente artículo desarrollaremos un pronóstico a través de una regresión lineal múltiple que en términos generales se puede representar por Y=\beta_{0}+\beta_{1}X_{1}+\beta_{2}X_{2}+\cdots +\beta_{k}X_{k} donde Y es la variable dependiente, X_{1},X_{2},\cdots ,X_{k} las variables independientes y \beta _{0},\beta _{1},\beta _{2},\cdots,\beta _{k} los coeficientes de la regresión. En particular consideraremos en el siguiente ejemplo una variable dependiente (Ganancias en Millones de $) y 2 variables explicativas o independientes (Número de Vendedores y Precio del Producto $), es decir, Y=\beta _{0}+\beta _{1}X_{1}+\beta _{2}X_{2}, donde X_{1} es el N° de Vendedores y X_{2} el Precio del Producto ($). La información se resume en la tabla a continuación:

datos-regresion-lineal-mult

En el artículo Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda se detalla el procedimiento para obtener una regresión lineal simple con una variable explicativa, lo cual se favorece con la utilización de las herramientas que provee Excel como se muestra en los siguientes gráficos:

graficos-regresion-lineal-s

¿Qué sucede si ahora buscamos explicar las Ganancias en Millones de $ a través del Número de Vendedores y Precio del Producto $? (ambas variables independientes o explicativas en forma simultanea). Existen varias alternativas para lograr lo anterior. Un procedimiento sencillo es utilizar la herramienta de Análisis de Datos de Excel cuya implementación se muestra a continuación:

estadisticas-regresion-mult

Otra alternativa es hacer uso del software estadístico Minitab 17. El siguiente tutorial muestra la implementación computacional:

salida-regresion-multiple-m

La diferencia en los coeficientes de la regresión de ambos procedimientos obedece sólo a aspectos de visualización de los resultados. Luego, la interpretación es la siguiente: las variables independientes Número de Vendedores y Precio del Producto $ explican el 97,23% de la variación de las Ganancias en Millones de $. Notar que al considerar 2 variables independientes el coeficiente de determinación r cuadrado aumenta en comparación a las alternativas que consideran sólo una variable independiente o explicativa.

¿Quieres tener el archivo Excel con la Regresión Lineal Múltiple desarrollada en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Propiedad de Falta de Memoria o Amnesia de la Distribución Exponencial

En el análisis del comportamiento de las Líneas de Espera, se reconoce que el proceso de llegada de los clientes al sistema ocurre de forma totalmente aleatoria. Se entiende por aleatorio que la ocurrencia de un evento no se ve afectado por el tiempo transcurrido desde la ocurrencia de un evento anterior. Por ejemplo, si en estos momentos son las 10:30 y la última llegada de un cliente fue a las 10:15, la probabilidad de que la siguiente llegada sea a las 10:35 es función sólo de las 10:30 a las 10:35 y en consecuencia es totalmente independiente del tiempo transcurrido desde la ocurrencia del último evento, es decir, de las 10:15 a las 10:30. Este resultado se conoce como falta de memoria o amnesia de la Distribución Exponencial.

linea-de-espera-llegada

Consideremos el siguiente ejemplo que permite ilustrar esta situación: Una máquina en operación tiene una unidad de reserva para sustituirla de inmediato cuando falla. El tiempo medio entre fallas (conocido también como MTBF o Mean Time Between Failures) se distribuye exponencial y sucede cada 50 minutos (en promedio). El operario de la máquina comenta que ésta suele descomponerse cada tarde a eso de las 17:00. Se requiere analizar la validez de lo que señala el operario.

El tasa promedio de fallas de la máquina es \lambda =60/50=1,2[fallas/hora]. Luego la distribución exponencial del tiempo entre fallas se representa por f(t)=1,2e^{-1,2t}, t>0.

Se concluye que lo que señala el operario no es correcto dado que contradice a que el tiempo entre fallas se distribuye exponencial y que por consiguiente es totalmente aleatorio. Dicho de otro modo la probabilidad de que la máquina falle a las 17:00 dependerá de la hora del día (en relación a las 17:00) con la que se calcule. Por ejemplo, si ahora son las 16:30, la probabilidad de que lo que afirma el operador sea cierto es:

probabilidad-tiempo-entre-f

El resultado anterior se puede corroborar haciendo uso de la herramienta de cálculos de probabilidad del software Geogebra:

geogebra-probabilidad-tiemp

A continuación presentamos un breve tutorial de nuestro canal de Youtube con la implementación en Geogebra del ejemplo anterior:

Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17

En el siguiente tutorial mostraremos cómo hacer un gráfico de promedios y un gráfico de rangos en el contexto del Control Estadístico de Procesos (CEP) utilizando el software estadístico Minitab 17. Para tal propósito utilizaremos los mismos datos del Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos que desarrollamos en un artículo previo. Cabe destacar que cualquier diferencia entre el artículo de referencia y los resultados que se observan en el vídeo a continuación obedecen sólo a criterios de aproximación de decimales.

Vídeo disponible en nuestro Canal de Youtube en https://youtu.be/ghNlFTjrjBo

Minitab 17 genera las gráficas de control de forma automática, las cuales podemos comparar con las que se pueden obtener haciendo uso de Excel.

promedios-y-rangos-minitab-

grafica-promedios-control-e

grafica-rangos-control-esta

El proceso del ejemplo se encuentra bajo control estadístico. Notar que los resultados de cada muestra tanto del gráfico de promedio como rangos se encuentran dentro de los límites de control. No obstante llama la atención el aumento de la variabilidad (rangos) de las últimas muestras lo que sugiere mantener un estrecho control sobre el proceso productivo para evitar que éste salga de los límites.