Problema de Explotación de Minas y Transporte de Carbón a Puertos

Es frecuente reconocer en los problemas de optimización que representan una estructura productiva, un componente de costo fijo asociado a la utilización de un recurso (dentro de un intervalo de producción relevante) y un costo variable que que asume proporcional al nivel de actividad que represente la unidad productiva (por ejemplo, lo que se refiere a costos de producción, costos de transporte en una red logística, entre otros). Por ejemplo, el Problema de Inclusión de Costos Fijos en Programación Entera representa una situación muy sencilla de lo anteriormente descrito.

En este contexto a continuación se presenta un problema de operación de minas de carbón que su simple utilización tiene asociado un costo fijo, además de incurrir en costos variables por concepto de producción y transporte a distintos puertos demandantes, que adicionalmente tienen requerimientos particulares sobre la calidad del producto recepcionado.

Problema de Explotación de Minas y Transporte

La compañía ABC puede explotar hasta tres minas de carbón y debe realizar envíos a tres puertos. El costo por tonelada de producción (en dólares), el costo fijo de operación en dólares (en caso de ser utilizada), los contenidos de una cierta clase de ceniza y de sulfuro por tonelada y las capacidades de producción (en toneladas de carbón) se resumen en la siguiente tabla:

antecedentes-productivos-mi

Por su parte, las toneladas demandadas que deben ser enviadas a cada puerto, conjuntamente con los costos de transporte (en dólares por tonelada) se dan en la siguiente tabla:

demanda-puertos

Formule y resuelva un modelo de optimización que permita determinar la eventual operación de cada mina y sus niveles de producción, de modo de satisfacer los requerimientos de demanda y que las cantidades enviadas a cada puerto contenga a los más un 4,5% de ceniza y a lo más un 3% de sulfuro.

Variables de Decisión:

variables-minas-y-puertos

Parámetros:

parametros-minas-y-puertos

Función Objetivo: Se desea minimizar los costos asociados a la explotación de las minas, el costo de producción del carbón y los costos de transporte del carbón enviado desde las minas a los puertos.

funcion-objetivo-minas-y-pu

Restricciones:

Capacidad de Producción de las Minas: cada mina puede operar a su capacidad máxima de producción para abastecer los requerimientos de los distintos puertos en caso en que se decida realizar funciones de explotación en la misma.

capacidad-minas

Demanda de Carbón los Puertos: cada puerto debe recibir la cantidad de toneladas de carbón que demanda.

demanda-carbon-puertos

Máximo Porcentaje de Ceniza admitido por cada Puerto: cada puerto esta dispuesto a recibir como máximo un 4,5% de ceniza en los envíos de carbón que recibe desde las minas. En este caso se expresa dicha condición de forma general a través de parámetros.

maximo-ceniza-puertos

Máximo Porcentaje de Sulfuro admitido por cada Puerto: similar al caso anterior pero estableciendo un límite máximo al porcentaje de sulfuro que admite cada puerto (en el ejemplo un 3%).

maximo-sulfuro-puertos

No Negatividad: las toneladas producidas en las minas y transportadas a los puertos naturalmente deben satisfacer las condiciones de no negatividad.

no-neg-minas-y-puertos

A continuación de presenta un extracto de la implementación computacional del modelo anterior haciendo uso de Solver de Excel junto a un tutorial de nuestro canal de Youtube con los detalles de la resolución:

solucion-minas-y-puertos-so

Se puede observar que sólo se utilizan las minas 1 y 3. La mina 1 envía 35, 45 y 30 toneladas al Puerto 1, 2 y 3, respectivamente. En el caso de la mina 3, ésta envía 35, 35 y 30 toneladas a los Puertos 1, 2 y 3, respectivamente. La demanda en toneladas de carbón es satisfecha en los puertos y se respeta adicionalmente la capacidad máxima de producción de las minas. Adicionalmente se puede observar en color verde el porcentaje de ceniza o sulfuro (según sea el caso) que recibe cada puerto lo cual satisface las condiciones expuestas. Finalmente el valor óptimo, es decir, el costo mínimo asociado al plan de producción y transporte descrito es de 14.550 dólares.

¿Quieres tener el archivo Excel con la implementación computacional de este problema?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

¿Cómo elegir los invitados de una Boda o Matrimonio con un modelo de Programación Entera?

Elegir los invitados a una boda (matrimonio) no es asunto fácil. Se debe respetar un presupuesto, cumplir compromisos familiares, compatibilizar los invitados de las distintas familias, incluir amigos y compañeros de trabajo y evitar incompatibilidades entre los invitados. El siguiente problema corresponde a una aproximación simplificada a la situación anterior a través de un modelo de Programación Entera. Por cierto las condiciones a incorporar en un problema de esta naturaleza pueden considerar aspectos adicionales como los comentados anteriormente.

lista-de-invitados

Asuma que usted trabaja en una consultora matrimonial y su tarea es seleccionar los invitados para una boda. Tanto la novia como el novio están muy complicados porque tienen amigos que no pueden estar juntos. Los novios han asignado a cada invitado un valor en unidades matrimoniales (u.m) según lo siguiente:

tabla-invitados-boda

Existen ciertas incompatibilidades que se deben considerar en la planificación que usted como consultor propondrá:

  • Juan Pérez no asistirá al menos que Luis Toro asista.
  • Juan Pérez no asistirá si tanto Pedro Soto y María González asisten.
  • Pedro Soto no asistirá si Gloria Pérez asiste.
  • Pedro Soto sólo asistirá si María González y Luis Toro asisten.

Formule y resuelva un modelo de Programación Entera que permita determinar a qué personas invitar de modo de lograr la mayor puntuación en unidades matrimoniales.

Variables de Decisión:

variables-decision-boda

Con i=1,2,3,4,5 que representan a Juan Pérez, Pedro Soto, María González, Luis Toro y Gloria Pérez, respectivamente.

Función Objetivo:

funcion-objetivo-boda

Se desea encontrar la selección de invitados a la boda que permita maximizar la puntuación en u.m.

Restricciones:

  • Juan Pérez no asistirá al menos que Luis Toro asista: X_{1}\leqslant X_{4}
  • Juan Pérez no asistirá si tanto Pedro Soto y María González asisten: 2-(X_{2}+X_{3})\geq X_{1}
  • Pedro Soto no asistirá si Gloria Pérez asiste: X_{2}+X_{5}\leq 1
  • Pedro Soto sólo asistirá si María González y Luis Toro asisten: X_{2}\leqslant X_{3} y X_{2}\leqslant X_{4}. En este conjunto de restricciones se entiende que si María González y Luis Toro asisten, Pedro Soto podría asistir. Si al menos uno de los 2 falta (María o Luis) entonces Pedro no asiste.

Al implementar el modelo anterior en Solver de Excel se alcanza un valor óptimo de 800 u.m el cual corresponde a invitar a Pedro Soto, María González y Luis Toro (solución óptima).

solucion-optima-boda

Problema de Transbordo en una Red Logística de Transporte Multiperíodo

Una empresa multinacional de productos de consumo masivo que opera a nivel nacional tiene 2 plantas de producción donde fabrican un solo producto para transportar a 2 locales con capacidad máxima de producción de 1.000 y 1.500 unidades mensuales, respectivamente. Uno de los locales está en el norte y otro en el sur de Chile. Para llegar a estos locales se tiene un centro de distribución que sólo abastece el norte y otro que sólo abastece el sur. Además de esto se tiene un centro de distribución en la ciudad capital (Santiago) que se abastece de los otros 2 centros de distribución y que despacha tanto al norte como al sur. Una red logística que representa el Problema de Transporte con Transbordo anterior se presenta a continuación:

red-logistica-de-transporte

La demanda de los locales para los próximos 2 meses es:

demanda-problema-transbordo

Adicionalmente sólo los centros de distribución norte y sur tienen capacidad para almacenar unidades de inventario de modo de satisfacer una demanda futura. El costo unitario mensual de almacenar inventario es de $1,5 y $0,8, para el centro de distribución norte y sur, respectivamente.

Formule y resuelva un modelo de Programación Lineal que permita determinar el plan de distribución óptimo para el problema de transbordo que representa la Gestión de una Cadena de Suministro. Defina claramente las variables de decisión, función objetivo y restricciones.

Problema de Transbordo en una Red Logística de Transporte

Variables de Decisión:

variables-de-decision-trans

Parámetros:

parametros-transbordo

Función Objetivo: se busca minimizar durante el período de planificación los costos de la logística de transporte desde las plantas a los centros de distribución, desde los centros de distribución a los locales, desde los centros de distribución a Santiago y desde Santiago a los locales, en conjunto con los costos de inventario en los centros de distribución.

funcion-objetivo-transbordo

Restricciones:

Capacidad de Producción de las Plantas: lo que envía mensualmente cada planta a cada uno de los centros de distribución (norte y sur) no puede superar la capacidad máxima de producción de la respectiva planta.

capacidad-plantas-transbord

Balance en los Centros de Distribución: la cantidad de productos que recibe un centro de distribución desde las plantas en un mes, considerando adicionalmente el inventario inicial y lo que se desee dejar en inventario al final del mes respectivo, deberá ser igual a lo que dicho centro de distribución envíe en aquel mes a los locales y al centro de distribución en Santiago.

balance-distribucion-transb

Demanda de los Locales: los productos que demande mensualmente cada local (1 o 2) deberá ser satisfecho desde los centros de distribución, incluyendo lo que eventualmente se envíe desde Santiago.

demanda-locales-transbordo

Balance en Santiago: los productos que recibe mensualmente Santiago desde los centros de distribución norte y sur deberá ser igual a lo que este centro de distribución envíe a los 2 locales que abastece (Santiago a diferencia de los centros de distribución norte y sur no almacena inventario).

balance-santiago

Rutas Infactibles: no es posible enviar productos de forma directa (en cualquiera de los meses) desde el centro de distribución norte al local 2 y desde el centro de distribución sur al local 1.

rutas-infactibles-transbord

No Negatividad: naturalmente las variables de decisión definidas inicialmente deberán adoptar valores mayores o iguales a cero.

A continuación se muestra un extracto de la implementación computacional del problema de transbordo haciendo uso de Solver de Excel. El valor óptimo es de $24.370.

solucion-optima-transbordo

Por otra parte las celdas en color amarillo corresponden a las variables de decisión (con color naranjo se identifican los parámetros), donde destaca que no se utiliza el centro de distribución sur. En cuanto al centro de distribución norte, éste se abastece de 1.620 unidades durante el mes de Julio (1.000 de la Planta 1 y 620 de la Planta 2), de los cuales envía 1.500 unidades a Santiago y las restantes 120 las almacena en inventario. De las 1.500 que dispone Santiago en el mes de Julio, envía 900 al Local 1 (Norte) y 600 al Local 2 (Sur) satisfaciendo la demanda. En cuanto al mes de Agosto, el centro de distribución norte recibe en total 2.500 unidades las cuales suma a las 120 en inventario que quedaron a fines de Julio, enviando todas ellas a Santiago. Luego de las 2.620 disponibles en Santiago en el mes de Agosto, envía 1.750 al Local 1 y 870 al Local 2, satisfaciendo la demanda de dichos destinos y minimizando el costo total de la logística de transporte.

¿Quieres tener el archivo Excel con la resolución en Solver del Problema de Transbordo en una Red Logística de Transporte Multiperíodo presentado en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Formulación de un Problema de Aleaciones de Metales resuelto con Solver de Excel

Los modelos de Programación Lineal constituyen una excelente herramienta para representar Problemas de Mezcla de Productos en los cuales se asume que la calidad de la mezcla final en términos de los atributos propios de sus componentes, será proporcional a la participación de los insumos. En este contexto, el siguiente problema representa la situación de una empresa metalúrgica que debe determinar la combinación óptima de distintas aleaciones de metales que le permita configurar una nueva aleación a un costo mínimo. Por cierto se asume que el supuesto básico de la Programación Lineal asociado a la proporcionalidad es admisible.

Problema de Aleaciones de Metales

Una empresa metalúrgica desea fabricar 100 kilos de una nueva aleación que contenga no más de un 45% de Cobre, no menos de un 30% de Acero y un 20% de Estaño a partir de cuatro aleaciones que tienen las siguientes propiedades:

tabla-aleaciones

Formule y resuelva un modelo de Programación Lineal que permita determinar el porcentaje de cada una de las aleaciones debe contener la nueva aleación, de forma que resulte a un mínimo costo.

metales-aleacion

Variables de Decisión: Se propone definir la cantidad de kilogramos que representará cada una de las 4 aleaciones originales en la nueva aleación. Análogamente se puede definir como variables de decisión el porcentaje que representa cada aleación (original) respecto a la nueva aleación.

variables-decision-aleacion

Función Objetivo: Se desea minimizar el costo asociado a la utilización de las distintas utilizaciones.

funcion-objetivo-aleacion

Restricciones: El valor que adopten las variables de decisión previamente definidas deben satisfacer las condiciones que establecen las siguientes restricciones.

Kilogramos a Producir de la Nueva Aleación: Se deben producir 100 kilogramos de la nueva aleación.

fabricar-100-kilos-de-la-al

Máximo Porcentaje de Cobre: La nueva aleación debe contener como máximo un 45% de cobre.

maximo-porcentaje-de-cobre

Mínimo Porcentaje de Acero: La nueva aleación debe contenemos como mínimo un 30% de acero.

minimo-porcentaje-acero

Porcentaje de Estaño: La nueva aleación debe tener exactamente un 20% de estaño.

porcentaje-estaño

No Negatividad: Naturalmente las variables de decisión deben adoptar valores mayores o iguales a cero.

no-negatividad-aleacion

A continuación se muestra un extracto de los resultados computacionales luego de hacer uso de Solver de Excel.

solucion-optima-solver-alea

La solución óptima consiste en X_{1}=25, X_{2}=0, X_{3}=25, X_{4}=50, con valor óptimo V(P)=1.375.000. Dicha solución representa 100 kilogramos de la nueva aleación (que en efecto corresponde a la sumatoria de la cantidad de kilos que representa cada variable) donde la nueva aleación tiene un 45% de cobre, un 35% de acero y un 20% de estaño.

¿Quieres tener el archivo Excel con la resolución en Solver del Problema de Aleaciones de Metales presentado en este artículo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Evaluación de Proveedores y Determinación del Tamaño Óptimo de Pedido utilizando EOQ con Descuentos

El siguiente artículo representa la evaluación de 2 proveedores que ofrecen un esquema de descuentos por cantidad por las unidades vendidas, asumiendo que se satisfacen los supuestos simplificadores del modelo de Cantidad Económica de Pedido o EOQ. En particular consideraremos que la demanda del producto es constante y conocida y adicionalmente que el costo unitario de compra dependerá del tamaño del pedido (en este sentido utilizaremos el modelo de Cantidad Económica de Pedido (EOQ) con Descuentos por Cantidad).

Ejemplo EOQ con Descuentos

Una compañía necesita comprar controles remotos y tiene una demanda semestral de 4.800 unidades. Los controles pueden ser comprados o del proveedor A o del B. Los precios por cantidad de cada proveedor están en la tabla abajo:

proveedores-eoq-con-descuen

El costo por pedido es de $30 para cualquiera de los proveedores y el costo anual de inventario es 25% del costo unitario. Adicionalmente la compañía incurre en un costo fijo por emitir un pedido de $10 por concepto de gastos administrativos. ¿De cuál proveedor la compañía debe comprar y cuál es el tamaño del pedido si el objetivo es minimizar costos totales anuales?.

En primer lugar determinamos el tamaño de pedido para cada uno de los tramos de descuentos por cantidad que aplican al Proveedor A. Notar que se considera una demanda anual de 9.600 controles remotos (un año tiene 2 semestres). Para el tramo 1 el pedido se aproxima a la cota superior de dicho intervalo; para el tramo 2 se mantiene el lote obtenido dado que pertenece al intervalo de [200,499] y en el tramo 3 se aproxima el tamaño de pedido a la cota inferior del intervalo (500 unidades) lo cual permite acceder a un precio unitario de $13,60.

eoq-tramos-proveedor-a

En consecuencia los candidatos a óptimo son pedidos de 199, 472 y 500 unidades para el Proveedor A. Para ver cuál de ellos reporta el menor costo total anual se evalúa en la función de costos totales:

costos-totales-proveedor-a

El tamaño óptimo de pedido en caso de seleccionar el Proveedor A es de 500 unidades por pedido.

En el caso del Proveedor B el procedimiento es similar al descrito para el Proveedor A. En este caso los candidatos a óptimo son pedidos de 149, 349 y 474 unidades.

eoq-tramos-proveedor-b

Al evaluar en la función de costos totales (anual) se observa que el tamaño de lote que minimiza los costos para el Proveedor B son 474 controles por pedido.

costos-totales-proveedor-b

Finalmente se procede a comparar los costos mínimos para cada proveedor con lo cual se concluye que se debe comprar al Proveedor A y hacer pedidos de 500 controles, alcanzando un costo total anual de $132.178 (que incluye los costos que se incurren anualmente por concepto de compra, emisión de pedidos y almacenamiento).