Cálculo de Índice de Habilidad Cp e Índice de Capacidad Cpk en el Control Estadístico de Procesos

Al planear los aspectos de calidad de la manufactura, nada es más importante que asegurarse de antemano de que el proceso productivo será capaz de mantener las tolerancias. La habilidad del proceso proporciona una predicción cuantitativa de qué tan adecuado es un proceso. La habilidad del proceso es la variación medida, inherente del producto que se obtiene en ese proceso. En este contexto, la habilidad permite entre otras cosas establecer limites de especificación realistas.

La fórmula para el cálculo de la habilidad del proceso que más se usa es: Habilidad del Proceso = +- 3σ (un total de 6σ) donde σ es la desviación estándar del proceso cuando se encuentra bajo control estadístico. Adicionalmente si el proceso esta centrado en la especificación nominal y sigue una distribución de probabilidad normal, 99,73% de la producción estará a menos de de la especificación nominal.

En este contexto la tasa de habilidad de un proceso Cp se refiere a la variación en un proceso alrededor del valor promedio, obteniéndose a través de la siguiente fórmula (notar que se usa 6S como estimación de ):

formula-cp

Un proceso que cumple bien con los límites de especificación (rango de especificación = +- 3σ) tiene un Cp=1. Lo crítico de muchas aplicaciones y la realidad de que el promedio del proceso no permanecerá en el punto medio del rango de especificación sugiere que Cp debe ser al menos 1,33.

En este contexto es útil tener un índice de habilidad que refleje ambas variaciones y la localización del promedio del proceso. Tal índice es Cpk o índice de capacidad del proceso, el cual refleja la proximidad de la media actual del proceso al Límite de Especificación Superior (LES) o al Límite de Especificación Inferior (LEI).

formula-cpk

Si el promedio actual es igual al punto medio del rango de especificación, entonces Cpk=Cp.

Adicionalmente si un proceso se encuentra en control estadístico, la siguiente relación se cumple para usar S como una estimación de σ (desviación estándar):

formula-s-control-estadisti

A continuación se presenta el calculo de los índices Cp y Cpk aplicado a los datos del ejemplo de las Gráficas de Promedios y Rangos en el Control Estadístico de Procesos. El resumen de los datos se observa en la siguiente tabla:

calculo-promedio-y-rango

Luego se procede a la estimación de S (recordar que cada muestra tiene 4 observaciones, en consecuencia n=4 y d2=2,059).
calculo-s-control-estadisti

Notar que el parámetro d2=2,059 se puede obtener de la siguiente tabla:

constantes para gráficas de control

El cálculo de Cp y Cpk esta dado por:

calculo-cp-y-cpk-control-es

La media del proceso (999,6 OHMS) se encuentra prácticamente centrada respecto a la especificación nominal (1.000 OHMS). Esto se corrobora en la similitud de los indicadores Cp y Cpk. No obstante lo anterior  la habilidad del proceso es relativamente baja (se recomienda al menos Cp≥1,33) lo que permite anticipar que un porcentaje significativo de resistores podrían estar fuera de los límites de especificación.

Existen un importante número de herramientas que permiten el cálculo sencillo de estos indicadores de desempeño. Al respecto recomendamos a nuestros usuarios leer el artículo Cómo Calcular Cp y Cpk con el Complemento SPC for Excel que muestra cómo utilizar el complemento SPC de Excel para simplificar este tipo de operaciones.

Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos

El Control Estadístico de Procesos (CEP) es una metodología que da la confianza estadística de que un componente está dentro de una tolerancia sin tener la necesidad de medir cada componente. Como su nombre lo sugiere es un control del proceso (no del producto) y es un indicador más que una solución. En este contexto la importancia del Control Estadístico de Procesos radica en los siguientes aspectos:

  1. Se utiliza como apoyo al proceso de Control de Gestión.
  2. Consiste en la aplicación de métodos estadísticos a la medición y análisis de la variación en cualquier proceso.
  3. Permite diagnosticar el estado del proceso: Se dice que el proceso está bajo control estadístico (estable) si no presenta señales de que existe alguna causa asignable de variación y en consecuencia representa un proceso predecible. Una causa asignable es detectable y posible de eliminar con una justificación económica.

Las principales herramientas del Control Estadístico de Procesos lo constituyen las cartas de control (de promedios y rangos), las cuales se aplican en el monitoreo de las características de calidad de un producto y detecta cuando el proceso esta fuera de control. A continuación presentaremos un ejemplo que permite la evaluación de si un proceso se encuentra bajo control estadístico mediante la elaboración e interpretación de las gráficas de control de promedios y rangos.

Gráfica de Promedios y Gráfica de Rangos

Una máquina automatizada a alta velocidad fabrica resistores para circuitos electrónicos. La máquina está programada para producir un lote muy numeroso de resistores de 1000 OHMS cada uno, siendo éste el valor ideal para cada resistor y admitiéndose una variación sobre dicho valor de ± 25 OHMS.

Con el fin de ajustar la máquina y crear una gráfica de control para utilizarla a lo largo de todo el proceso, se tomaron 15 muestras con cuatro resistores cada una. La lista completa de muestras y sus valores medidos es la siguiente:

tabla-datos-control-estadis

¿Se encuentran el proceso bajo control estadístico?. Grafique los datos en una gráfica de control de promedio (X) y de rango (R) con los limites de control. Para el cálculo del promedio muestral considere los resultados aproximados a un decimal. Comente e interprete los resultados.

En primer lugar necesitamos calcular los límites de control estadístico para las gráficas de promedio y rango. Para ello se deben considerar las siguientes fórmulas y parámetros:

formulas-limites-de-control
tabla-parametros-control-es

Con esta información procedemos a calcular el promedio y rango de cada una de las 15 muestras. Por ejemplo el promedio de la muestra 1 se obtiene de X1=(1010+991+985+986)/4=993 y el rango R1=1010-985=25 (la diferencia en magnitud de la mayor y menor observación de la muestra). Se replica el procedimiento para el resto de las muestras lo cual se facilita haciendo uso de una planilla Excel según se observa a continuación:

calculo-promedio-y-rango

Finalmente se obtienen los límites de control estadístico los cuales se resumen en la siguiente tabla:

calculo-limites-de-control-

A continuación se grafican los resultados de cada una de las muestras (celdas color amarillo de la planilla anterior) en contrastes con los límites de control.

grafica-promedios-control-e
grafica-rangos-control-esta

  • El proceso se encuentra bajo control estadístico. Tanto en la gráfica de promedios y rangos los resultados de las muestras están dentro de los límites de control. Recomendamos a nuestros usuarios revisar el artículo Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17.

  • En la gráfica de promedios se observa una dispersión aleatoria respecto a la media del proceso aun cuando llama la atención de la media de las muestras 4 y 5.

  • En la gráfica de rangos se observa un leve tendencia creciente a contar de la muestra 9. Si bien las observaciones se mantienen dentro de los límites de control, esta situación se debe tener bajo alerta dado que muestra un aumento en la variabilidad.

Problema de Selección de Cartera de Proyectos a través de la Programación Entera

La Programación Entera provee una forma eficiente de enfrentar los problemas de selección de proyectos a ejecutar dentro de una cartera de potenciales proyectos a realizar, donde cada uno de éstos tiene asociado un tiempo de ejecución, requerimientos de fondos de inversión y necesidades adicionales. El siguiente artículo aborda la formulación de un modelo de optimización de Programación Entera que permita seleccionar los proyectos a realizar que maximice el Valor Presente Neto (VPN) del conjunto, respetando restricciones presupuestarias, políticas de inversión y de disponibilidad de personal.

Problema de Selección de Cartera de Proyectos

Consideremos una empresa que tiene en carpeta 8 proyectos, cada uno de los cuales con una estimación del VPN, la necesidad de financiamiento (en dólares) y los requerimientos de personal. La información se resume en la siguiente tabla:

tabla-inversion-proyectos

Por ejemplo, el Proyecto 1 requiere de 120 profesionales para ser realizado, con una inversión inicial de 15 millones de dólares y representa un Valor Presente Neto (VPN) de 8 millones de dólares. Asumiremos que la empresa dispone de 155 profesionales, un presupuesto para inversión de 40 millones de dólares. Adicionalmente para efectos de minimizar el riesgo la empresa debe ejecutar al menos 4 proyectos. Los proyectos 3 y 6 son excluyentes, es decir, sólo uno de los 2 puede ejecutarse.

Variables de Decisión:

variable-invertir-proyecto

Probablemente el lector se pregunte si es equivalente definir Xi: dólares a invertir en el Proyecto i. El problema subyacente a dicha formulación es asumir que si, por ejemplo, se invierte 7,5 millones de dólares en el Proyecto 1 se obtiene un VPN de 4 millones de dólares, es decir, que el VPN es proporcional al dinero invertido. Recordar que la proporcionalidad es un supuesto básico de la Programación Lineal donde claramente no provee una forma realista de representación en este caso, donde la naturaleza de la decisión es realizar o no un proyecto, sin dejar espacio para decisiones «intermedias».

Función Objetivo:

funcion-objetivo-inversion-

Consiste en maximizar la sumatoria del Valor Presente Neto de los proyectos (en millones de dólares). En este contexto el valor óptimo corresponderá a la suma del VPN de aquellos proyectos que finalmente se llevaran a cabo.

Restricciones:

Se debe respetar la disponibilidad de trabajadores:

restriccion-disponibilidad-

La inversión total no puede superar el presupuesto disponible:

restriccion-presupuesto-pro

Al menos se deben realizar 4 proyectos para efectos de diversificación del riesgo:

al-menos-4-proyectos

Los proyectos 3 y 6 son excluyentes:

proyectos-excluyentes

Luego de implementar computacionalmente el problema anterior con Solver se alcanza los siguientes resultados:

solucion-optima-proyectos

La solución óptima consiste en desarrollar los proyectos 2, 4, 5, 6 y 7 lo que reporta un VPN de 10,7 millones de dólares (valor óptimo).

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4355″]

Ejemplo del Problema del Flujo Máximo en Programación Entera resuelto con Solver

Este tipo de problemas (Problema del Flujo Máximo) es similar al Problema de Ruta más Corta, pero ahora se busca determinar el flujo máximo entre un nodo fuente y un nodo destino, los que están enlazados a través de una red, con arcos con capacidad finita, tal como se presenta en la siguiente figura. Notar que los números asignados a cada uno de los arcos representan los flujos máximos o capacidades correspondientes a cada arco.

ruta-flujo-maximo

Problema del Flujo Máximo

Desde el punto de vista de la Programación Entera podemos plantear la situación de la siguiente forma:

Variables de Decisión:

variables-flujo-maximo

Función Objetivo: Maximizar las unidades que salen del nodo de origen (1) a los que éste conecta (2, 4 y 5) o alternativamente maximizar las unidades que llegan al nodo de destino (8) desde los que conectan a él (3, 6 y 7).

funcion-flujo-maximo

Restricciones:

Restricciones de Flujo Máximo: La cantidad de unidades que sale de cada nodo de origen a un nodo de destino no puede superar la capacidad detallada en el arco, por ejemplo, del nodo 1 al nodo 2 sólo se pueden enviar 7 unidades.

restricciones-flujo-maximo

Restricciones de Balance de Flujo en los Nodos: Debe existir un equilibrio entre la cantidad de unidades que llega a un nodo y las que de éste salen, por ejemplo el número de unidades que se envía desde el nodo 1 al 4 (si es que así fuese el caso) debe ser igual a lo que desde el nodo 4 se envían al nodo 3 y 6.

balance-flujo-maximo

No Negatividad e Integralidad: Las variables de decisión de decisión deben cumplir las condiciones de no negatividad. Adicionalmente exigiremos que éstas adopten valores enteros aún cuando se podría flexibilizar dicha situación lo que daría origen a un problema de Programación Lineal.

no-negatividad-flujo-maximo

Luego de implementar el modelo de optimización anterior con Solver se alcanza la siguiente solución óptima y valor óptimo:

solucion-flujo-maximo

Notar que el flujo máximo de unidades que puede llegar al nodo de destino son 32 unidades (valor óptimo) donde cualquiera de las funciones objetivos propuestas proporciona el mismo resultado (en particular hemos utilizado la primera de ellas). Los valores de las celdas en color amarillo representan la solución óptima, es decir, la cantidad de unidades que fluyen en cada combinación de un nodo origen destino.

En el siguiente tutorial de nuestro canal de Youtube se detalla la implementación computacional que permite alcanzar los resultados anteriormente expuestos:

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4352″]

Gestión de Inventarios a través de Cadenas de Markov en Tiempo Discreto

La gestión de inventarios hace uso de distintas herramientas metodológicas que abordan 2 preguntas básicas: ¿de qué tamaño debe ser un pedido? y ¿cada cuánto tiempo se debe realizar un pedido?. En el siguiente artículo se propone la utilización de una Cadena de Markov en tiempo discreto para determinar la política de reposición de inventarios de una empresa: Una tienda que mantiene un inventario de un producto dado para satisfacer una demanda (aleatoria). La demanda diaria D, tiene la siguiente distribución de probabilidades:

distribucion-probabilidad-d

Consideremos una política de inventarios denominada (q,Q), que indica que si el nivel de inventarios al final de cada día es menor a q=2 se ordenan Q=1 unidades adicionales (las cuales se asumen disponibles al inicio del día siguiente), en caso contrario no se hace ninguna orden. La demanda no satisfecha es venta perdida y hay 2 unidades al final en n=0 (distribución inicial). Sea Xn el nivel de inventario al final del día n (esto corresponde a la definición de la variable aleatoria), interesa modelar el problema mediante una Cadena de Markov.

Un primer desafío consiste en determinar los posibles estados que puede adoptar la variable aleatoria en una etapa n cualquiera. Notar que es posible finalizar un día sin unidades en inventario, dado que si bien esta situación genera una reposición de 1 unidad, ésta se asume disponible al inicio del día siguiente. Adicionalmente también es posible terminar un día con 1 o 2 unidades en inventario (en estos casos no se genera reposición). Sin embargo, no es posible terminar un día con 3 unidades en inventario (recordar que en n=0 se dispone de 2 unidades en inventario y dada la política de reposición, ésta se genera cuando se dispone de menos de 2 unidades en inventario). En resumen, los estados posibles para la variable aleatoria son Xn℮{0,1,2}.

A continuación estimamos las probabilidades de transición en una etapa las cuales se resumen en la siguiente matriz de probabilidades de transición (matriz P):

markov-inventarios

Por ejemplo, si en un día n en particular se finaliza con 0 unidades en inventarios se genera un pedido que al inicio del día siguiente permitirá disponer de 1 unidad; para que dicho día (n+1) se termine con 0 unidades en inventario se requiere que la demanda sea mayor o igual a 1 unidad (este es el caso de P00).

Adicionalmente se pueden estimar las probabilidades estacionarias, es decir, que en el largo plazo (independiente de la distribución inicial) se disponga al final de un día de 0, 1 o 2 unidades en inventario. Para ello se debe clasificar los estados de la cadena donde en particular se corrobora que ésta es irreducible con estados recurrentes positivos aperiódicos.

solucion-largo-plazo-invent

En consecuencia la probabilidad de que en el largo plazo se disponga de 0 unidades al final de un día es de un 50% (1/2), tener una unidad es un 37,5% (3/8) y 2 unidades un 12,5% (1/8). Alternativamente podemos hacer uso de las ecuaciones matriciales para que partiendo de la distribución inicial (dato) se estime la probabilidad de encontrarse en cualquiera de los estados al cabo de 1, 2, …, n etapas (con n que tiende a infinito). Dicho resultado corrobora los resultados anteriores:

ecuaciones-matriciales-inve

Se propone al lector comprobar que independiente de la selección de la distribución inicial las probabilidades de largo plazo son las expuestas.