Ejemplo del Cálculo del Punto de Equilibrio

En todo negocio un aspecto imprescindible consiste en evaluar la ganancia potencial de un producto o servicio, ya sea nuevo o existente. Se considera que los costos asociados a la producción de un producto o prestación de un servicio se puede dividir básicamente en 2 categorías: costos fijos (independientes del volumen de producción dentro de un rango de producción relevante) y costos variables (que varían directamente con el volumen de producción, asumiendo una relación lineal o proporcional). En este contexto el punto de equilibrio determina cuál debe ser el número de unidades vendidas que permite equiparar los ingresos totales con los costos totales, es decir, aquel volumen de ventas que evita pérdidas y ganancias.

Dado lo anterior queda de manifiesto la importancia de la evaluación del punto de equilibrio. El análisis se enfoca a responder preguntas del tipo:

  1. ¿Las ventas pronosticadas resultan ser suficientes para evitar pérdidas?

  2. ¿Cuánto debe bajar el costo variable unitario para alcanzar el punto de equilibrio, dadas las condiciones actuales de precios y proyecciones de ventas?

  3. ¿Cuál es el impacto del precio unitario en la obtención del punto de equilibrio?

  4. ¿Cuánto deben bajar los costos fijos para estar en una situación sin ganar o perder?

Sea CT=F+cQ el costo total de producir un bien o prestar un servicio, donde F es el costo fijo y cQ los costos variables (c es el costo unitario y Q la cantidad vendida). Adicionalmente sea IT=pQ el ingreso total, donde p es el precio unitario. El punto de equilibrio en términos de las unidades vendidas esta dado por:

formula-punto-de-equilibrio

Ejemplo Cálculo del Punto de Equilibrio

Una clínica esta evaluando un nuevo examen que reportará ingresos de $200 por paciente. El costo fijo anual será de $100.000 y los costos variables son de $100 por paciente. ¿Cuál es el punto de equilibrio para este servicio?.

Al evaluar en la fórmula anterior obtenemos lo siguiente:

ejemplo-punto-de-equilibrio

Es decir, si se realizan 1.000 exámenes (asumiendo un examen por paciente) los ingresos totales igualan a los costos totales, evitando tanto pérdidas como ganancias. De forma complementaria con la ayuda de Excel se puede evaluar de forma sencilla tanto los ingresos como costos totales para distintos niveles de actividad (en este caso número de exámenes o pacientes). La línea azul representa el ingreso total en miles de $ (eje vertical) para distintos valores de números de pacientes (eje horizontal). La línea roja representa el costo total donde resulta de particular interés observar que su valor es de $100 (mil) en el caso de cero pacientes (costo fijo).

punto-de-equilibrio-excel

Una representación alternativa del ejemplo anterior hemos desarrollado con Geogebra, la cual se muestra a continuación. El área achurada de color rojo representa la pérdida, es decir, cuando el número de pacientes es menor al punto de equilibrio, por el contrario el área achurada de color verde representa la ganancia, en la cual se incurre cuando el nivel de pacientes supera el punto de equilibrio.

grafica-punto-de-equilibrio

El Proceso de Transformación de Insumos en Productos o Servicios

Un proceso productivo consiste en un conjunto de actividades que toma como entradas uno o más insumos y los transforma para obtener como salidas o resultado un producto o servicio. En artículos anteriores hemos descrito que dicho proceso productivo puede tener distintas configuraciones, de modo ser compatible con la estrategia de procesos de la empresa, como aquellos con énfasis en el volumen de producción (Producción en Masa o Flow Shop) o por el contrario aquellos que privilegian la adaptación a necesidades particulares de los clientes con un volumen de producción acotado (Producción Tipo Taller o Job Shop). Por cierto la clasificación anterior constituye una simplificación del análisis dado que en la actualidad existe un auge por sistemas productivos híbridos que combinan elementos de las clasificaciones anteriores de modo de explotar sus ventajas relativas y ser más competitivos.

Proceso de Transformación de Insumos en Productos o Servicios

Una visión esquemática de lo que constituye un proceso de transformación típico se presenta a continuación:

proceso-de-transformacion-o

El área de Marketing procura que la salidas del proceso de transformación se transformen en ventas lo cual se convierte en rendimiento para los accionistas de la empresa. Por otro lado Finanzas busca garantizar la disponibilidad de recursos financieros para la adquisición de insumos y las inversiones en bienes de capital que sean necesarias para mantener la organización en un adecuado funcionamiento. Finalmente Operaciones (o equivalentemente la Gestión de Operaciones) se encarga de traducir los insumos o materiales en salidas (bienes y/o servicios) con énfasis en la productividad de dicho proceso de transformación. Cabe destacar que la descripción anterior simplifica los propósitos de las áreas funcionales de la empresa como también omite la contribución significativa de áreas (procesos) de apoyo y soporte como Recursos Humanos, Contabilidad, Sistemas de Información, entre otros.

En la siguiente tabla se presentan algunos ejemplos que ilustran distintos tipos de relaciones de insumos – transformación – producto:

ejemplos-procesos-de-transf

Por ejemplo en el caso de un servicio como un hospital los insumos primarios son los pacientes, los cuales son atendidos por médicos y enfermeras (además de paramédicos, administrativos, etc) que a su vez hacen uso de suministros médicos y equipamiento para prestar una atención médica (fisiológica) que sea satisfactoria y que idealmente resuelva de forma íntegra o parcial los requerimientos del paciente (dependiendo del caso).

Finalmente para efectos de evaluación del desempeño se requiere disponer de indicadores de gestión o KPI (Key Performance Indicator). En el contexto anterior resulta de particular interés el cálculo de la productividad, a saber, el valor de las salidas efectuadas dividido por la cantidad de los recursos de entrada, es decir:

formula-productividad

Por ejemplo, consideremos una empresa de la industria automotriz que fabrica 50 autos a la semana y que utiliza las siguientes entradas:

ejemplo-productividad-parci

De esta forma la productividad parcial del trabajo es de 0,25[u/hr], capital de 0,002[u/$] y energía 0,015[u/W]. En un próximo artículo abordaremos como incorporar en un ejemplo de esta naturaleza el concepto de productividad multifactorial.

Cómo obtener la Ruta Crítica de un Proyecto (CPM) con OM Explorer en Excel

El el artículo Cómo obtener la Ruta Crítica de un Proyecto (Critical Path Method) describimos de forma detallada cómo las holguras de las actividades de un proyecto y la ruta o camino más largo (no necesariamente único) que determina la duración de un proyecto. Como complemento a lo anterior a continuación presentamos cómo desarrollar este procedimiento de forma sencilla haciendo uso de OM Explorer. Para este propósito utilizaremos como ejemplo un proyecto que considera un total de 12 actividades que se muestran a continuación junto al tiempo esperado para completar cada una de las actividades (en meses) y la relación de predecesores.

actividades-proyecto-ruta-c

En primer lugar y una vez instalado el complemento OM Explorer en Excel ingresamos a Solvers (como se aprecia en la esquina superior izquierda en la imagen a continuación) y luego seleccionamos Project Management y Single Time Estimate.

project-management-om-explo

Luego en la pestaña Inputs del archivo se ingresan las actividades, el tiempo requerido para completarlas y las relaciones de predecesores. La plantilla permite implementar hasta 4 predecesores por actividad lo que es claramente suficiente para nuestro ejemplo.

inputs-proyecto-om-explorer

Una vez incorporadas la totalidad de las actividades en Inputs podemos revisar los resultados obtenidos en la hoja Results. Se observa el tiempo para completar el proyecto (15,5 meses) y con color rojo se destacan las actividades críticas (con holgura igual a cero), a saber, A-B-D-G-H-I-K-L, las que en dicho orden determinan la ruta crítica del proyecto (en este ejemplo única). Adicionalmente tanto para las actividades pertenecientes a la ruta crítica como aquellas con holgura mayor a cero se detalla el inicio más cercano (Early Start), término más cercano (Early Finish), inicio más lejano (Late Start) y término más lejano (Late Finish).

ruta-critica-con-om-explore

OM Explorer entrega adicionalmente una Carta Gantt donde se observa las actividades críticas en color rojo (con holgura o slack igual a cero), el tiempo de las actividades no críticas en color amarillo y el tiempo holgura de las actividades no críticas en color celeste, lo cual permite interpretar de forma intuitiva los resultados obtenidos.

Elección y Construcción del Gráfico de Control apropiado en el Control Estadístico de Procesos (CEP)

Los gráficos de control son una de las principales herramientas del Control Estadístico de Procesos (CEP o su equivalente en inglés Statistical Process Control (SPC)). De forma previa a la construcción de un gráfico de control, se sugiere seguir de forma secuencial una serie de pasos de modo de poder analizar en detalle los procesos. En el contexto anterior a continuación detallamos algunos criterios para la elección y construcción del gráfico de control adecuado para su proceso:

1. Analizar la característica de calidad de la que se desea hacer el gráfico: es importante destacar que el control estadístico de los procesos sirve tanto para procesos productivos como para servicios, por lo que la característica de calidad puede ser el diámetro de la tapa de un frasco de vidrio, el tiempo que tardamos en resolver un reclamo de un cliente, el porcentaje de boletas erróneas o el número de visitas necesarias hasta poner en funcionamiento una determinada aplicación.

2. Elegir el tipo de gráfico de control apropiado: la primera decisión es cuándo utilizar gráficos de variables o de atributos. Un gráfico de variables se utiliza para controlar características medibles, en tanto que un gráfico de atributos se utiliza en una inspección del tipo pasa o no pasa. Al respecto el complemento SPC for Excel permite generar de forma rápida y sencilla gráficos de atributos y variables como se muestra en la siguiente imagen:

spc-for-excel

3. Elegir los estadísticos para la línea central del gráfico y la base para calcular los límites de control: normalmente se utiliza la media de los datos recogidos para la línea central. Los límites de control estadístico se obtienen (usualmente) sumando y restando tres veces una estimación de la desviación estándar al valor central. Por ejemplo, a continuación se muestra una Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos (gráfico de variables para el promedio muestral).

grafica-promedios-control-e

4. Elegir una muestra: el término muestra es el normalmente utilizado, si bien muestra puede significar un solo valor, y si es posible, es aconsejable utilizar muestras de más de un valor en los gráficos de control. Se deben seleccionar las muestras de tal forma que la probabilidad de un cambio en el proceso se minimice durante la toma de la muestra (por eso se debe utilizar una muestra pequeña), en tanto que la probabilidad de un cambio, si va a ocurrir, es máxima entre dos muestras consecutivas. Esto es el concepto de tomar subgrupos racionales. En consecuencia es mejor tomar pequeñas muestras periódicamente que una única muestra grande.

muestreo-estadistico-calida

5. Diseñar un sistema para recoger los datos: si buscamos que los gráficos de control sean una herramienta útil, la toma de datos debe ser simple y relativamente libre de error.

6. Calcular los límites de control y dar instrucciones adecuadas a todos los involucrados en el gráfico de control sobre su significado y la interpretación de sus resultados: examinar las condiciones de fuera de control y eliminar las causas especiales (asignables) de variación. Una vez que el proceso esté bajo control, fijar los límites y continuar analizando el proceso hasta que se produzca un cambio.

El siguiente diagrama esquemático muestra los criterios a considerar para seleccionar el gráfico de control adecuado:

eleccion-tipo-control-estad

Los beneficios más importantes al utilizar los gráficos de control y el control estadístico de los procesos:

  1. Los gráficos de control son una herramienta efectiva para entender la variabilidad de los procesos y ayudan a alcanzar el control estadístico. En este sentido entrega información confiable de cuando se debería ajustar el proceso y cuando no.

  2. Cuando un proceso está bajo control estadístico, su rendimiento será predecible. En consecuencia, tanto el productor como el cliente, serán conscientes de los niveles de calidad de los productos o servicios.

  3. Un proceso bajo control estadístico puede ser mejorado a través de la reducción de la variabilidad natural o aleatoria.

  4. Los gráficos de control proporcionan un lenguaje común para comunicar información sobre el rendimiento de los procesos.

  5. Los gráficos de control, al permitir diferenciar entre las causas de variación asignables y las aleatorias, proporcionan una buena indicación sobre si los problemas pueden resolverse de forma local, o requerirán de la intervención de la alta dirección de la empresa.

Cambio en el Lado Izquierdo de las Restricciones en Programación Lineal

El el contexto del Análisis de Sensibilidad en Programación Lineal es usual analizar el impacto que tiene la modificación en la disponibilidad de los recursos en la solución óptima alcanzada originalmente. Esto corresponde al Cambio en el Lado Derecho de las Restricciones (Análisis de Sensibilidad en Programación Lineal). En el siguiente artículo abordaremos el caso cuando cambia un coeficiente o parámetro en el lado izquierdo de las restricciones, generalmente asociado a un coeficiente tecnológico o factor de productividad (por ejemplo, la cantidad de horas hombre que puede requerir la fabricación de un producto, la cantidad de dinero requerido por unidad a producir dada una restricción presupuestaria, entre otras). En relación a lo anterior consideremos el caso de una empresa la cual tiene un plan de producción representado por:

modelo-lado-izquierdo

Donde x_{j} es la cantidad a producir del bien j, z la utilidad de la empresa (en unidades monetarias u.m) y los coeficientes a_{ij} de las restricciones, la cantidad de recurso i por unidad del producto j. Al aplicar el Método Simplex al modelo anterior incorporando x_{4} y x_{5} como variables de holgura de las restricciones del recurso 1 y 2 respectivamente, resulta la siguiente tabla final:

tabla-simplex-lado-izquierd

Si el requerimiento del primer recurso por parte del producto j=2 cambia de 5 a 2 debido a la incorporación de una nueva tecnología ¿Cambia la actual solución óptima? (x_{1}=\frac{20}{3}, x_{2}=\frac{4}{3} y x_{3}=0). Sabemos que:

formula-matriz-inversa

Luego al cambiar un coeficiente en el lado izquierdo asociado a la variable básica x_{2}, es necesario actualizar la matriz de base inversa o B^{-1}. Lo anterior se deduce del cálculo de la matriz inversa asociada a la matriz B donde los elementos en la columna correspondiente a los coeficientes en el lado izquierdo (forma estándar del Método Simplex) asociadas a las variables básicas x_{1}x_{2}, respectivamente. Finalmente obtenemos la nueva solución básica y verificamos si es factible, esto es si el valor que adopta cada una de las variables básicas satisface las condiciones de no negatividad (en caso que una de las variables básicas alcance un valor negativo se puede continuar las iteraciones con el Método Simplex Dual luego de actualizar el valor de la función objetivo).

calculo-xb-cambio-lado-izqu

En nuestro ejemplo x_{1}=\frac{28}{3}x_{2}=\frac{2}{3} y x_{3}=0 lo cual implica que se modifica la solución óptima original pero se conserva la actual base óptima (las mismas variables básicas originales). El nuevo valor óptimo será:

valor-optimo-cambio-lado-iz