Análisis ABC de Ventas de Productos mediante un Diagrama de Pareto

Uno de los aspectos claves en la competitividad de una Cadena de Suministro es tomar decisiones acertadas en cuanto a los tamaños de pedidos a realizar a los proveedores, teniendo en consideración un entorno con una demanda incierta o aleatoria (es decir, que no se tiene certeza del valor que adquirirá dicha variable de antemano) y productos con distinto ciclo de vida. En este contexto las metodologías cuantitativas constituyen una contribución en este desafío de determinación de pedidos óptimos, siendo el Análisis ABC de la venta de los productos una de sus principales herramientas.

Análisis ABC de Ventas

Consideremos una empresa que maneja sólo 14 SKU (Stock Keeping Unit) y que ha recolectado la estadística de ventas de cada uno de sus productos en el último año (por ejemplo se vendieron 207 unidades del producto A en el mes de Enero). Los datos se resumen a continuación:

analisis-abc-productos

La Venta Promedio (PROM) del producto A es de 334,8 unidades (se obtiene simplemente de la sumatoria de las ventas de Enero a Diciembre de dicho producto dividido en 12 meses, es decir, (207+293+200+…+412)/12=334,8). La Desviación Estándar (D.EST) de la venta del producto A es de 116,9 unidades y el Coeficiente de Variación (CV) o Índice de Variabilidad se obtiene al dividir la Desviación Estándar por la Venta Promedio. Por cierto los cálculos se facilitan al hacer uso de una planilla Excel, lo cual ahorra esfuerzos en la medida que se trabaja con un número creciente de productos.

A continuación se desarrolla un Análisis ABC de la venta de los productos el cual se basa en la aplicación de la Regla de Pareto. Para ello se ordena en forma descendente los productos según los datos de la columna Venta Promedio (PROM) en color amarillo, luego se calcula cuánto representa dicho promedio respecto a la sumatoria de todos los promedios (que es 2.866,4 unidades), por ejemplo, para la SKU E es 1.666,7/2.866,4=58,14% (aprox). Finalmente la última columna (% ACU.) corresponde al porcentaje acumulado de la venta total de productos para un cierto nivel de SKU acumuladas (por ejemplo, en conjunto los productos E, A y B corresponden al 80,40% de la venta total).

tabla-pareto-abc

El Diagrama de Pareto correspondiente a los datos anteriores se puede obtener fácilmente haciendo uso de Excel según detallamos en el artículo Cómo hacer un Diagrama de Pareto con Excel 2010.

diagrama-pareto-abc-product

La información obtenida a través del análisis ABC de venta de productos es útil toda vez que orienta respecto a aquellos productos con mayor rotación de inventarios, la variabilidad de la demanda y la concentración de la venta en distintos SKU. Todos estos elementos orientan la toma de decisiones y permite priorizar de mejor forma las distintas iniciativas en la Gestión de la Cadena de Suministro (SCM), buscando garantizar el suministro en tiempo y cantidad de aquellos productos que son los más relevantes para la empresa.

Ejemplo del Algoritmo de Wagner y Whitin (Sistemas de Loteo)

El Algoritmo de Wagner y Whitin (1958) consiste en una extensión natural y dinámica al problema de Tamaño Económico de Pedido (conocido también como Cantidad Económica de Pedido o EOQ) donde la demanda durante el período de planificación presenta variabilidad, no obstante, se sigue manteniendo el supuesto de asumir que dicha demanda es conocida.

De esta forma, dada una demanda que presenta variabilidad en el tiempo, costos de emisión de pedidos asociados a la gestión de los mismos y no al volumen involucrado en ellos, y costos de almacenamiento correspondientes al inventario de los productos almacenados en inventario, se busca determinar una política de pedidos que satisfaga los requerimientos de demanda al menor costo posible.

En este contexto asumiremos que el lead time (tiempo de reposición) es nulo, es decir, el pedido se recibe en el mismo período en el que se realiza y que adicionalmente estamos frente a un Problema de Tamaño de Lote No Capacitado, vale decir, que no existe limitantes de capacidad y que, eventualmente, se podría satisfacer la demanda íntegra del horizonte de planificación a través de un único pedido que se realice en el primer período (mediante la acumulación de inventarios para períodos futuros).

Un problema similar al que se aborda con el Algoritmo de Wagner y Whitin es el Problema de Producción e Inventario, en el cual frecuentemente se incorporan limitantes de capacidad para la cantidad de unidades que se pueden pedir en cada período, constituyendo de esta forma un problema capacitado.

Algoritmo de Wagner-Whitin

Los pasos detallados para la implementación del Algoritmo de Wagner y Whitin pueden encontrarse en la publicación académica original: Dynamic Version of the Economic Lot Size Model, (Versión Dinámica del Tamaño Económico de Pedido) disponible para descarga por un valor de 30 dólares. No obstante, a continuación resumiremos los pasos del algoritmo y presentaremos un ejemplo de su aplicación para favorecer su comprensión.

  • Paso 1: Considere la política de ordenar en el período t^{**}, t^{**}=1,2,…,t^{*} y satisfacer las demandas d_{t}, t=t^{**},t^{**}+1,…,t^{*} en ese orden.
  • Paso 2: Determine el costo total de las t^{*} políticas de pedido, sumando los costos de emisión y almacenamiento asociados a la emisión de un pedido en t^{**}, y el costo de actuar de forma óptima entre el período 1 y el período t^{**}-1 consideradas por si mismas.
  • Paso 3: De las t^{*} alternativas, seleccione la política de mínimo costo del período 1 hasta t^{*} consideradas de forma independiente.
  • Paso 4: Continué al período t^{*}+1 o detengase si t^{*}=N donde N representa el horizonte de planificación.

Ejemplo del Algoritmo de Wagner y Whitin

Consideremos las necesidades asociadas a un producto cualquiera para un período de planificación de 12 meses (N=12). La demanda Dt que se enfrenta cada mes es variable, como así también los costos de emitir un pedido (St), no obstante, el costo unitario de almacenar una unidad en inventario de un mes a otro (Ht) por simplicidad se asumirá que es fijo.

tabla demanda emisión almacenamiento

Aplicamos a continuación el Algoritmo de Wagner y Whitin:

El plan óptimo para el período 1 es ordenar (asumiendo un costo de emisión de $85).

Para el período 2 se deben evaluar 2 posibilidades:

  • ordenar en el período 2 y usar la mejor política para el período 1 considerado por si solo (con un costo de emisión de $102+$85=$187).
  • o emitir un pedido en el período 1 para ambos períodos (1 y 2), almacenando inventario para el período 2 (con un costo total de $85+$29=$114).

En este caso comparativamente es mejor la segunda alterativa.

En el período 3 existen tres alternativas:

  • emitir un pedido en el período 3 y utilizar la mejor política para los períodos 1 y 2 (a un costo de $102+$114=$216).
  • o emitir un pedido en el período 2 para los 2 últimos períodos (2 y 3) y utilizar la mejor política para el período 1 considerado de forma independiente (a un costo de $102+$36+$85=$223).
  • o emitir un pedido en el período 1 para los 3 períodos (con un costo de $85+$29+$36+$36=$186).

En nuestro ejemplo, resulta evidente que no existen incentivos para almacenar productos en inventario en el período 1 o 2 para satisfacer la demanda del período 4, dado que los costos de almacenamiento excederían los costos de emisión de pedido en el período 4. Si lo anterior es cierto, claramente no tiene sentido guardar inventario en el período 1 o 2 para satisfacer demanda de un período superior al 4 (5, 6, 7, etc).

Para los datos propuestos en nuestro ejemplo, la política óptima de pedidos según el Algoritmo de Wagner Whitin es la siguiente:

  1. Pedir 135 unidades (79+56) en el período 11 para satisfacer los requerimientos del período 11 y 12, y utilizar la política óptima para los períodos del 1 al 10.
  2. Emitir un pedido de 67 unidades para el período 10 y utilizar la política óptima de pedidos para los períodos 1 al 9.
  3. Pedir 112 unidades (67+45) en el período 8 para satisfacer la demanda de los períodos 8 y 9, y luego utilizar la mejor alternativa para los períodos del 1 al 7.
  4. Ordenar 121 unidades (61+26+34) en el período 5 para enfrentar la demanda de los períodos 5, 6 y 7.
  5. Pedir 97 unidades (36+61) en el período 3 para satisfacer la demanda de los períodos 3 y 4.
  6. Finalmente pedir 98 unidades (69+29) en el período 1 y con ello cumplir la demanda de los períodos 1 y 2.

La siguiente tabla resume los resultados anteriormente expuestos.

wagner y whitin

Al pie del cuadro resumen se detalla, por ejemplo, «567 indica la política óptima de pedido para los períodos del 1 al 7 es pedir en el período 5 y satisfacer la demanda de los períodos 5, 6 y 7 y adoptar una política óptima para los períodos 1 al 4 considerados de forma separada».

El costo asociado a implementar el Algoritmo de Wagner y Whitin al problema propuesto como ejemplo es de $864. Se propone al lector corroborar que dicha política minimiza los costos de inventario en comparación a otros sistemas de loteo como Costo Total Mínimo, Costo Unitario Mínimo, EOQ, entre otras.

Una forma de corroborar los resultados obtenidos es mediante una aplicación en Excel que permite automatizar los procesos de cálculo. Básicamente ingresando un inventario inicial (en nuestro ejemplo cero), la demanda pronosticada, los costos de emisión de pedidos y los costos de almacenamiento, se puede fácilmente aplicar una política de lotificación como aquellas que tratamos en extenso en el Plan de Requerimientos de Materiales (MRP).

wagner y whitin excel

Observación: La imagen anterior ha sido editada para efectos de una mejor resolución de modo que solo se visualiza los resultados parciales hasta el período 8. El archivo Excel con la aplicación donde se encuentran los resultados del ejemplo desarrollado en este artículo, como también la posibilidad de poder utilizarlo con otras políticas de lotificación se puede descargar a continuación.

[sociallocker]Descarga Aquí el Archivo Excel del Algoritmo de Wagner y Whitin: lotsizing[/sociallocker]

Evaluación de Proveedores y Determinación del Tamaño Óptimo de Pedido utilizando EOQ con Descuentos

El siguiente artículo representa la evaluación de 2 proveedores que ofrecen un esquema de descuentos por cantidad por las unidades vendidas, asumiendo que se satisfacen los supuestos simplificadores del modelo de Cantidad Económica de Pedido o EOQ. En particular consideraremos que la demanda del producto es constante y conocida y adicionalmente que el costo unitario de compra dependerá del tamaño del pedido (en este sentido utilizaremos el modelo de Cantidad Económica de Pedido (EOQ) con Descuentos por Cantidad).

Ejemplo EOQ con Descuentos

Una compañía necesita comprar controles remotos y tiene una demanda semestral de 4.800 unidades. Los controles pueden ser comprados o del proveedor A o del B. Los precios por cantidad de cada proveedor están en la tabla abajo:

proveedores-eoq-con-descuen

El costo por pedido es de $30 para cualquiera de los proveedores y el costo anual de inventario es 25% del costo unitario. Adicionalmente la compañía incurre en un costo fijo por emitir un pedido de $10 por concepto de gastos administrativos. ¿De cuál proveedor la compañía debe comprar y cuál es el tamaño del pedido si el objetivo es minimizar costos totales anuales?.

En primer lugar determinamos el tamaño de pedido para cada uno de los tramos de descuentos por cantidad que aplican al Proveedor A. Notar que se considera una demanda anual de 9.600 controles remotos (un año tiene 2 semestres). Para el tramo 1 el pedido se aproxima a la cota superior de dicho intervalo; para el tramo 2 se mantiene el lote obtenido dado que pertenece al intervalo de [200,499] y en el tramo 3 se aproxima el tamaño de pedido a la cota inferior del intervalo (500 unidades) lo cual permite acceder a un precio unitario de $13,60.

eoq-tramos-proveedor-a

En consecuencia los candidatos a óptimo son pedidos de 199, 472 y 500 unidades para el Proveedor A. Para ver cuál de ellos reporta el menor costo total anual se evalúa en la función de costos totales:

costos-totales-proveedor-a

El tamaño óptimo de pedido en caso de seleccionar el Proveedor A es de 500 unidades por pedido.

En el caso del Proveedor B el procedimiento es similar al descrito para el Proveedor A. En este caso los candidatos a óptimo son pedidos de 149, 349 y 474 unidades.

eoq-tramos-proveedor-b

Al evaluar en la función de costos totales (anual) se observa que el tamaño de lote que minimiza los costos para el Proveedor B son 474 controles por pedido.

costos-totales-proveedor-b

Finalmente se procede a comparar los costos mínimos para cada proveedor con lo cual se concluye que se debe comprar al Proveedor A y hacer pedidos de 500 controles, alcanzando un costo total anual de $132.178 (que incluye los costos que se incurren anualmente por concepto de compra, emisión de pedidos y almacenamiento).

Cómo Construir el Gráfico de Costos Totales del Modelo EOQ con Excel

En el artículo Deducción de la Fórmula del modelo de Tamaño Económico de Pedido (EOQ) discutimos los fundamentos que permiten obtener la solución de dicho modelo, en particular aquel tamaño de pedido que permite minimizar la función de costos totales. Siguiendo dicho desarrollo conceptual, a continuación presentaremos un ejemplo tipo del modelo de Cantidad Económica de Pedido (EOQ) donde con el apoyo de una planilla Excel construiremos la función de costos totales, mediante la evaluación del costo total para distintos tamaños de pedido.

La Joyería Caminante es representante exclusivo de los relojes Ballon Bleu, de la prestigiosa Maison Cartier™, elaborados con oro gris y cubiertos con alrededor de 500 diamantes. Se sabe que:

  • Caminante le paga a Maison Cartier 40.000€ por cada reloj que importa al país.

  • Los costos de transporte e internación ascienden a 4.000€ por orden, independiente del número de relojes transportados.

  • Una vez en el país, los relojes representan un costo de almacenamiento anual del 20% de su precio, debido a los elevados seguros involucrados.

  • El mercado de compradores para este artículo de lujo es obviamente limitado en el país, pero en los últimos años las ventas de este producto se han estabilizado en la cantidad de 3 relojes mensuales.

Determine el número de relojes que Caminante debe pedir cada vez que pone una orden con Maison Cartier™, de modo de minimizar sus costos totales. ¿Cual es el costo total anual que enfrenta Caminante sin incluir el costo de comprar los productos?.

El tamaño óptimo de pedido que permite minimizar el valor de la función de costos totales es:

q-optimo-eoq-relojes

Donde el costo total (mínimo) asociado a dicho tamaño de pedido es:

costo-total-relojes

Notar que se han omitido los costos de compra los cuales en este ejemplo al no existir descuentos por cantidad es el mismo independiente del tamaño del pedido.

Con la ayuda de una planilla Excel se puede evaluar cuál es el costo total anual para distintos tamaños de pedido. En particular resulta de interés evaluar el valor que alcanza la función de costos totales para tamaños de pedido entre 1 y 36 relojes (la siguiente tabla muestra un extracto de dicho procedimiento).

tabla-costo-total-en-funcio

La información completa se puede graficar lo que permite apreciar la convexidad de la función de costos totales. Se ha incluido una línea punteada de color rojo que intercepta el eje vertical (costo total anual) para un valor de 48.000€ el cual se alcanza para un tamaño de pedido de 6 relojes.

grafico-costo-total-eoq

Cálculo del Nivel de Servicio Instock utilizando una Demanda con Distribución Exponencial

Ejemplo Cálculo del Nivel de Servicio Instock: Un vendedor de flores tiene que decidir todas las noches cuántas flores va a llevar de su plantación a su local comercial para vender al día siguiente. La demanda por flores es estocástica y por experiencia estima que sigue una distribución exponencial con parámetro λ=0,015. El costo por flor para el vendedor es de $6 y las flores no vendidas son consignadas a $2 a un vendedor de flores secas (esto último se considera un valor de rescate o salvage value). Además se estima que el costo por cliente perdido es de $11.

En base a los antecedentes anteriores la cantidad óptima de pedido que sugiere el Modelo Newsvendor está dada por:

calculo-pedido-newsvendor

El nivel de servicio Instock asociado a un pedido de 54 unidades es:

instock-vendedor-de-flores

Que como se aprecia corresponde a la integral definida entre 0 y 54 unidades de la función de densidad de probabilidad exponencial con  parámetro λ=0,015. El resultado anterior se puede corroborar haciendo uso del software Geogebra:

instock-geogebra

De forma análoga, simplemente basta evaluar el tamaño del pedido de 54 unidades en la función de distribución exponencial para evitar el cálculo de la integral definida presentada anteriormente. En efecto:

instock-funcion-distribucio

El siguiente diagrama obtenido con el complemento StatAssist (parte de Easyfit) da cuenta de lo anterior, donde se modela una distribución exponencial (acumulada o F) con parámetro λ=0,015 y donde para un valor de x de 54 unidades F(x) es aproximadamente un 55,51%. (se puede corroborar con la fórmula de Excel =ExpCdf(54;0,015)).

statassist-exponencial