Problema de Tamaño de Lote No Capacitado (Formulación y Resolución en Solver)

El Problema de Tamaño de Lote No Capacitado o ULS (por sus siglas en inglés, Uncapacitated Lot-Sizing), consiste en decidir sobre un Plan de Producción para un horizonte de T periodos para un solo producto. El objetivo consiste en minimizar la sumatoria de los costos de producción, almacenamiento de productos en inventario y setup (costos de emisión), asumiendo que las demandas son conocidas en cada uno de los T periodos y éstas deben ser satisfechas de forma íntegra.

Una formulación típica del Problema de Tamaño de Lote No Capacitado considera los siguientes parámetros y variables de decisión.

Formulación Tradicional Problema de Tamaño de Lote No Capacitado

Variables de Decisión:

  • x_{t} = cantidad producida en el periodo t.
  • s_{t} = inventario al final del periodo t.
  • y_{t} = 1 si la producción ocurre en el periodo t, 0 si no.

Parámetros:

  • f_{t} = costo fijo de producción en el periodo t.
  • p_{t} = costo unitario de producción en el periodo t.
  • h_{t} = costo unitario de almacenamiento en el periodo t.
  • d_{t} = demanda en el periodo t.

La definición anterior da origen al siguiente problema de Programación Entera Mixta (PEM).

formulación tradicional tamaño de lote no capacitado

La función objetivo consiste en minimizar la suma de los costos de producción, costos de almacenamiento de productos en inventario y costos de emisión de pedidos, para todo el horizonte de planificación (T períodos).

Por otra parte las restricciones del problema quedan definidas por:

Balance de Inventario s_{t}=s_{t-1}+x_{t}-d_{t}: El inventario al final de un período t es igual al inventario al final del período anterior (t-1) más lo producido en el período t y menos lo demandado en el período t.

Capacidad de Producción x_{t}\leq M\cdot y_{t}: Si bien hemos definido el problema como no capacitado, esta restricción permite vincular la decisión de producción en un período con la cantidad (volumen) de dicha producción. De esta forma se evita situaciones anómalas como que en un período cualquiera se produzca y al mismo tiempo el y_{t} respectivo sea cero.

Además, asumiremos que la constante M es lo suficientemente grande (por ejemplo, la suma de las demandas para el horizonte de planificación). En términos prácticos esto hace que el problema no tenga limitantes de capacidad (es decir, es no capacitado) y que, en un extremo, podría producir en el primer período todo lo requerido durante el horizonte de planificación para luego ir satisfaciendo dichos requerimientos con los remanentes de inventario.

Inventario Inicial s_{0}=0: Se asume que no se dispone de inventario al inicio del horizonte de planificación.

Finalmente se establecen condiciones de no negatividad y binarios a las variables según corresponda.

Alternativamente se propone otra formulación como alternativa al Problema de Tamaño de Lote No Capacitado.

Formulación Dinámica Problema de Tamaño de Lote No Capacitado

Variables de Decisión:

  • w_{ts} = cantidad producida en el periodo t para satisfacer la demanda en el periodo s.
  • s_{ts} = inventario al final del periodo t destinado para el periodo s.
  • y_{t} = 1 si la producción ocurre en el periodo t, 0 si no.

Al conservar la definición de parámetros definida para la formulación anterior, se propone el siguiente modelo de Programación Entera:

formulación dinámica tamaño de lote no capacitado

De modo de corroborar la equivalencia de las formulaciones anteriores se propone una instancia sencilla que corresponde a 5 períodos de planificación (T=5) y donde los valores de los parámetros se resumen en la siguiente tabla. Por ejemplo, p_{1}=3 representa el costo de producción unitario en el período 1.

parámetros uls

La solución óptima alcanzada con la Formulación Tradicional del Problema de Tamaño de Lote No Capacitado ULS se observa en las celdas de color amarillo en la imagen a continuación. Se producen 32, 125 y 20 unidades en los períodos 1, 2 y 5, respectivamente, almacenando sólo productos en inventario al final del período 2 y 3 (84 y 36 unidades, respectivamente). El valor óptimo (costo total) asciende a $781.

solución óptima formulación tradicional uls

De forma análoga la solución óptima obtenida con la Formulación Dinámica del Problema de Tamaño de Lote No Capacitado ULS se observa en las celdas de color amarillo en la tabla a continuación.

Notar que w_{11}=32, es decir, en el primer período se produce sólo lo necesario para satisfacer los requerimientos de dicho período. Adicionalmente w_{22}=41, w_{23}=48 y w_{24}=36, es decir, en el período 2 se producen en total 125 unidades (41+48+36), para satisfacer la demanda de los períodos 2, 3 y 4. Por último en el período 5 se produce simplemente 20 unidades (w_{55}=20) para cumplir lo requerido.

Naturalmente dado lo descrito, la solución alcanzada en la Formulación Dinámica del ULS es equivalente a la obtenida en la Formulación Tradicional del ULS.

solución óptima formulación dinámica uls

Se puede consultar otras variantes de Problemas de Planificación de la Producción en nuestro sitio donde se detalla diversas formulaciones e instancias de problemas de esta naturaleza, donde destaca la contribución de la Investigación de Operaciones como herramienta de apoyo para la toma de decisiones.

[sociallocker]Descarga Aquí el Problema de Tamaño de Lote No Capacitado (ULS)[/sociallocker]

Planificación de la Producción Multiproducto

El siguiente problema consiste en la formulación de un modelo de Programación Entera y posterior resolución computacional haciendo uso del complemento OpenSolver de Excel, específicamente en lo que se refiere a un modelo que permita encontrar la estrategia óptima para la Planificación de la Producción Multiproducto (es decir, 2 o más productos) y multiperiodo (2 o más períodos en el horizonte de evaluación). Referencias adicionales sobre esta clase de problemáticas pueden ser consultadas en la categoría Plan Maestro de la Producción (PMP) donde se presentan un importante volumen de ejercicios resueltos de planificación agregada. Dicho lo anterior a continuación presentamos el ejemplo objeto de nuestro análisis:

Una empresa desea optimizar la planificación de la producción de sus cinco productos principales para los primeros 6 meses del año 2016. Para el desarrollo de la tarea encomendada la empresa recolecta los siguientes antecedentes:

demanda-multiproducto-multi

  1. El proceso de fabricación es intensivo en mano de obra donde cada trabajador percibe un salario bruto de US$1.200 por una jornada de 160 horas de trabajo al mes.

  2. El costo unitario de materiales y gastos generales, excluyendo el trabajo es de US$12 para A, US$14 para B, US$9 para C, US$13 para D y US$8 para E.

  3. El costo de mano de obra de producción en tiempo extra se paga con un recargo de un 50% respecto a la hora trabajada en horario normal. No obstante por política de la empresa se establece un máximo de 200 horas hombre en tiempo extraordinario para cada mes, exceptuando Enero y Febrero donde el límite corresponde a 100 horas (por acuerdos con el sindicato).

  4. El costo mensual de almacenar una unidad de cualquier producto en inventario es de US$4 por unidad. La bodega tiene una capacidad de almacenamiento de 250 unidades.

  5. El tiempo de producción por unidad es de 5 horas para A, 6 horas para B, 8 horas para C, 4 horas para D y 3 horas para E.

  6. La contratación de personal de producción considera un costo único de US$1.500 (adicional al sueldo) por concepto de capacitación y entrenamiento.

  7. Para la reducción de horas de trabajo o despido considere en promedio: un sueldo de US$1.200 y una antigüedad de 2 años. Por política de estabilidad laboral se establece un máximo de despido de 6 trabajadores durante el primer semestre.

  8. El inventario inicial corresponde a 120 y 80 unidades para los productos B y C respectivamente. No se dispone de inventario inicial para el producto A, D y E.

  9. La planilla de trabajadores al 31 de Diciembre de 2015 es de 55 trabajadores.

  10. Es posible dejar demanda pendiente del producto A y D asumiendo un costo unitario de US$25 en cada caso, la cual no expira y sólo se posterga para un próximo mes. No obstante la empresa requiere que como máximo queden 500 unidades de demanda pendiente (en total para la suma de ambos productos) a fines de Junio de 2016.

  11. En cuanto al producto B, éste se puede comprar adicionalmente a un proveedor a un costo unitario de US$75. Adicionalmente el costo fijo de gestionar un pedido al proveedor del producto B (independiente del tamaño del pedido) es de US$200.

  12. En cuanto al producto E, éste se puede comprar adicionalmente a un proveedor a un costo unitario de US$35. Adicionalmente el costo fijo de gestionar un pedido al proveedor del producto E (independiente del tamaño del pedido) es de US$150.

Formule y resuelva un modelo de optimización matemática que permita determinar la política operacional que minimice los costos totales en el horizonte de planificación y cumpla con las condiciones expuestas.

Planificación de la Producción Multiproducto

Variables de Decisión:

variables-de-decision-multi

Notar que se dispone de 5 productos y 6 períodos. En este contexto y con el objetivo de lograr una notación más compacta se utilizan los índices i y t para representar los productos y períodos (meses), respectivamente.

Parámetros:

parametros-pmp-multiproduct

La definición de parámetros no es estrictamente necesaria y se realiza de modo de establecer un caso más general para el problema que facilita (compacta) la notación requerida para definir el modelo. Se puede apreciar que no todos los datos factibles de poder representar con parámetros ha sido llevado a cabo, lo cual corresponde a una decisión arbitraria la que sin embargo no afecta los resultados.

Función Objetivo:

funcion-objetivo-multiprodu

Se busca minimizar los costos totales de la planificación multiproducto y multiperiodo. Los costos involucrados son (en orden): producción, inventario, mano de obra en tiempo normal, mano de obra en sobretiempo, contratación, despido, demanda pendiente, compra del producto B y compra del producto E.

Restricciones:

Balance de Inventario: Para el caso del producto A y D se puede utilizar demanda pendiente y para los productos B y E se pueden realizar compras. En este caso sólo los requerimientos del producto C deben ser satisfechos de forma exclusiva a través de la producción e inventario.

balance-de-inventario-multi

Balance de Trabajadores: La cantidad de trabajadores disponibles en un mes para funciones de producción será igual a los disponibles en el mes anterior, más los contratados en el mes y menos los despedidos en dicho mes.

balance-de-trabajadores-mul

Capacidad de Producción: El lado izquierdo de la restricción representa la cantidad de horas requeridas en un mes para la producción de los 5 productos, lo cual no podrá superar las horas disponibles (siendo éstas las horas en tiempo normal más las horas que eventualmente se utilicen en sobretiempo).

capacidad-de-produccion-mul

Capacidad de la Bodega: Para cada mes del horizonte de planificación la cantidad de productos almacenados en inventario (suma de todos los productos) no podrá superar la capacidad de almacenamiento de la bodega de 250 unidades.

capacidad-bodega-multiprodu

Máximo de Compras B y E: La cantidad máxima de compra para el producto B y E dependerá si se adopta la decisión de realizar una compra en el mes respectivo. En dicho caso la cantidad máxima a comprar corresponderá a los parámetros o constantes grandes M_{B}M_{E}, respectivamente. Por ejemplo un valor para M_{B} podría ser 3.152 que corresponde a la suma de la demanda del producto B del mes 1 al mes 6.

maximo-compras-b-y-e

Máxima Cantidad de Despidos: Durante el horizonte de planificación no se pueden despedir más de 6 trabajadores.

maximo-despidos-pmp

Máximo Demanda Pendiente Mes 6: Al final del mes 6 no debe quedar más de 500 unidades de demanda pendiente para el producto A y D (en conjunto).

maximo-demanda-pendiente

No Negatividad y Enteros: Las variables de decisión deben adoptar no negativos y enteros (exceptuando las variables binarias).

La implementación computacional con OpenSolver del modelo de optimización anterior entrega los siguientes resultados. Las celdas en color amarillo corresponden a las variables de decisión del problema definidas inicialmente que satisfacen las restricciones impuestas (solución factible).

solucion-optima-pmp-multipr

El valor óptimo corresponde a US$599.770 que corresponde al costo mínimo asociado al plan de producción. A continuación se desglosa dicho costo total en los distintos ítems de costos según lo detallado anteriormente.

valor-optimo-multiperiodo

¿Quieres tener la planilla Excel con la resolución en OpenSolver de este problema?.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Formulación de un Problema de Programación de Explotación Forestal resuelto con Solver de Excel

En el artículo Problema de Planificación Forestal resuelto con Graphic Linear Optimizer (GLP) describimos un problema de explotación forestal reducido en términos de la complejidad de un caso de esta naturaleza (de modo de representarlo gráficamente), el cual a continuación extenderemos a través de la incorporación de una serie de decisiones en el tiempo respecto a la actividad de producción, planificación de personal, gestión de inventarios, compra, entre otros.  En este contexto considere el caso de una compañía forestal que cosecha (tala) árboles los primeros meses del año. La compañía tiene una serie de pedidos que debe satisfacer cada mes. Estos datos se resumen a continuación:

demanda-arboles

Al 1 de Enero hay un total de 40 trabajadores y no hay árboles en inventario. La jornada laboral es de 40 horas semanales y 4 semanas laborales al mes. Para cosechar un árbol se requiere 4 horas hombre. Independiente de lo anterior la forestal tiene una capacidad de cosecha de 3.000 árboles mensuales lo cual está dado por la maquinaria disponible.

El sueldo mensual de cada trabajador es de M$400 (el sueldo se paga de forma íntegra ante todo evento, es decir, trabajando la totalidad de horas al mes o menos). La política de la gerencia es no utilizar horas extraordinarias pero si podría comprar árboles a otra forestal cercana a un costo unitario de M$18. Adicionalmente se ha convenido no contratar trabajadores por una fracción de una jornada de trabajo normal (160[horas/mes]). Esto implica que si se contrata un trabajador debe ser por 160[horas/mes] a un costo de M$400 pero no es válido, por ejemplo, contratar un trabajador por 80[horas/mes] a un costo de M$200. El costo de contratar un trabajador es de M$200 y el costo de despedir un trabajador se estima en M$600.

Almacenar un árbol en bodega tiene un costo de M$10 de un mes a otro. Sin embargo, en la bodega no hay espacio para almacenar más de 500 árboles.

Formule y resuelva un modelo de Programación Entera para este problema que permita hallar una política óptima de explotación para la forestal. Indique claramente las variables de decisión del modelo y detalle explícitamente la función objetivo y cada una de las restricciones del modelo.

Variables de Decisión:

variables-forestal

Donde t=1,…,6 con t=1 Enero y t=6 Junio.

Función Objetivo: Minimizar los costos durante el período de planificación asociado a las remuneraciones, contratación, despido, compra y mantenimiento de inventario (respectivamente).

objetivo-forestal

Restricciones:

Balance de Trabajadores: Por ejemplo la cantidad de trabajadores disponibles al final del mes de Marzo para labores de cosecha son aquellos que terminaron trabajando al final del mes de Febrero, más los contratados en el mes de Marzo y menos los despedidos en Marzo.

balance-trabajadores

Satisfacer Demanda de Árboles: Donde D_{t} representa la demanda (parámetros) de árboles para el mes t.

demanda-arboles-restriccion

Capacidad Tala (Mano de Obra): Talar cada árbol requiere 4 horas hombre y un trabajador aporte 160 horas hombre en un mes. Luego, cada trabajador puede talar como máximo 40 árboles mensuales.

capacidad-personal-forestal

Capacidad Tala (Máquinas): Se puede talar como máximo 3.000 árboles mensuales dada la capacidad de las máquinas.

capacidad-tala-maquina

Capacidad Bodega: La bodega tiene una capacidad máxima de almacenamiento de 500 árboles.

capacidad-bodega-forestal

No Negatividad y Enteros: Se deben satisfacer las condiciones de enteros para las variables de decisión no negativas.

no-negatividad-forestal

Al implementar en Solver de Excel el modelo anterior se alcanza la solución óptima (celdas en color amarillo) con un valor óptimo de M$152.360.

solver-explotacion-forestal

Se recomienda al lector verificar que la solución alcanzada satisface las restricciones anteriormente expuestas. Notar adicionalmente que el plan óptimo actual no despide trabajadores durante la planificación y contrata trabajadores en Febrero y Abril (11 y 19, respectivamente), los mismos meses donde adicionalmente compra árboles (10 y 110) a la forestal cercana. Naturalmente al final de la planificación no existen incentivos para mantener árboles en bodega.

¿Quieres tener el archivo Excel con la implementación computacional de este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Planificación de la Producción y Empaque en el Programa Maestro de Producción

El Plan Maestro de la Producción (PMP) especifica las fechas y las cantidades de producción que corresponden a cada uno de los elementos de la familia de productos (manufactura). En muchas aplicaciones el producto no esta terminado en la medida que no haya sido empacado, es decir, que este en una condición de uso suficiente para su comercialización. El siguiente artículo aborda el problema que enfrenta una empresa que debe programar los niveles de producción y empaque para 4 productos en un horizonte de planificación de 8 meses (4 bimestres), buscando satisfacer una demanda estimada al mínimo costo y haciendo uso de recursos limitados.

Planificación de la Producción

Una firma desea planificar la producción de los próximos 4 bimestres para sus productos finales, representados por los productos A, B, C y D. Esto se hará usando una política óptima de elaboración contra stock para satisfacer las demandas estimadas en cada periodo y cuyos valores se resumen en la siguiente tabla:

tabla-produccion-y-empaque

En la tabla se entrega igualmente una capacidad máxima de producción por producto, excepto para las labores de empacado. Asuma que estas capacidades son constantes sobre todo el periodo de planificación. En el caso de la sección de empaque esta transforma el producto en un producto empacado, de modo que hay una capacidad global sobre el número total de unidades que pueden ser empacadas en cada periodo y alcanza las 50.000 unidades por bimestre.

Es posible almacenar tanto productos finales como productos finales empacados en una cantidad ilimitada pues la bodega es bastante grande. Sin embargo, hay un costo unitario de mantención de unidades en inventario que se lista en la última columna de la tabla para un producto final empacado y que se asume no cambia en este horizonte de planificación. Asuma que el costo unitario de inventario de un producto final no empacado consiste en restar 4 euros por unidad al valor dado en la tabla para el costo de inventario de uno empacado. El actual inventario es nulo y no hay requerimientos de inventario al final del periodo de planificación.

Cada vez que se emplea la línea de empaque esta debe ser limpiada cuando se planifica empacar cada tipo de producto en un periodo y este proceso de limpieza o esterilización tiene un costo elevado. Dado lo anterior, se espera encontrar una solución donde no necesariamente se empaque de todos los tipos de productos finales en cada periodo. Para representar correctamente esta situación se tomará en cuenta un costo de setup que es independiente del periodo y la cantidad empacada pero si del tipo de producto y está dado por 500.000, 900.000, 800.000 y 900.000 euros para A, B, C y D, respectivamente.

Formule y resuelva computacionalmente un modelo de optimización que permita hallar una política óptima de producción que minimice los costos de inventario y setup, satisfaciendo los requerimientos (estimados) de demanda y las limitaciones en la capacidad de las instalaciones.

Variables de Decisión:

variables-produccion-y-empa

Parámetros: Dada la cantidad de datos del problema propuesto es conveniente trabajar con parámetros, de modo de utilizar una notación más compacta que es equivalente, a saber:

parametros-empaque

Función Objetivo: Se busca minimizar los costos asociados al proceso de empaque y almacenamiento de productos en inventario (empacados y no empacados) durante el período de planificación. Lo anterior se representa por la siguiente expresión:

funcion-objetivo-empaque

Restricciones:

Demanda producto empacado para cada producto i y bimestre t: La demanda de producto empacado de cada uno de los 4 productos en los 4 bimestres se debe satisfacer a través de lo empacado en dicho período y los saldos del mismo (si los hubiere) almacenados en períodos previos.

demanda-producto-empacado

Balance entre no-empacado y empacados para producto i y bimestre t: De forma similar a las restricciones anteriores, la cantidad de producto a empacar en un período (para cualquiera de las 4 variedades: A, B, B o D) se obtiene como un diferencial entre la producción de producto no empacado más el inventario inicial de producto no empacado menos la cantidad de producto no empacado que se deje en inventario al final del período.

balance-empacado-y-no-empac

Restricciones Lógicas: La cantidad de producto en un bimestre para un producto en particular no podrá superar las 50.000 unidades en caso que se decida empacar dicho producto en aquel período, en caso contrario no se empaca.

restricciones-logicas-empaq

Capacidad de empacado para cada bimestre t: La cantidad de productos A, B, C o D que en total se empaquen en cada período no puede superar la capacidad de empaque de 50.000 unidades por período.

capacidad-empacado-por-peri

Capacidad de producción en cada familia y bimestre t: Se debe respetar la capacidad de producción de producto no empacado para cada variedad y en cada período del horizonte de planificación.

capacidad-produccion-empaqu

No negatividad: Las variables de decisión deben adoptar valores no negativos.

no-negatividad-empaque

La siguiente imagen muestra la solución óptima (celdas amarillas) y valor óptimo (celda celeste) alcanzado a implementar este modelo de Programación Entera Mixta haciendo uso de Premium Solver Pro.

solucion-produccion-y-empaq

Consideremos el producto A de modo de ejemplificar respecto a la interpretación de los resultados. Se producen 6.000 unidades del producto A  y se empacan sólo 5.000 de ellas en el bimestre 1 (con las que se satisface la demanda del bimestre 1), en consecuencia, al final del período se dispone de 1.000 unidades de producto A no empacado.  Notar adicionalmente que a excepción del producto D para el resto de los productos no se empaca en todos los períodos.

¿Quieres tener el archivo Excel con la resolución en Premium Solver Pro de este problema?.

[sociallocker]solver-produccion-y-empaque[/sociallocker]

Estrategia de Inventario en el Plan Maestro de la Producción (PMP)

Una estrategia pura para desarrollar un Plan Maestro de la Producción (PMP) es la acumulación de inventarios cuando la capacidad de producción excede el Pronóstico de Demanda, para luego desacumular inventario cuando los requerimientos son mayores o incluso cuando la demanda supera la capacidad de producción.

Para presentar una aplicación de esta estrategia consideraremos los antecedentes de operación descritos en el artículo Formulación y Resolución de un modelo de Programación Entera para un Plan Maestro de la Producción (PMP).

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

Luego de aplicar la estrategia de acumulación y desacumulación de inventario se obtiene la siguiente alternativa factible con costo total de US$1.988.200.

estrategia-inventario-plan-

Cabe destacar que si bien esta estrategia evita la contratación y despido de trabajadores, de todos modos es necesario contratar 66 trabajadores en el mes de Enero. Este número no es arbitrario: corresponde a la mínima cantidad de trabajadores que permite mediante el inventario enfrentar los requerimientos de demanda durante el período de planificación.

Por ejemplo, si se contrata en Enero más de 66 trabajadores se alcanzaría una opción factible pero no en el mínimo posible de trabajadores. Si se contrata menos de 66 trabajadores no se alcanza un plan factible, lo que obligaría a la contratación de trabajadores en un mes posterior a Enero (lo cual determinaría una estrategia mixta).

Algunas conclusiones que se pueden obtener de la aplicación de este enfoque:

  • Tiene la ventaja práctica de poder enfrentar de mejor forma una demanda real mayor a la pronosticada cuando se dispone de inventario.
  • El costo adicional de esta opción es de US$519.800 en comparación al valor óptimo alcanzado en la resolución del modelo de optimización para los mismos datos. Lo anterior corrobora la evidencia empírica de que las estrategias puras suelen ser más costosas que los enfoques mixtos.
  • Evita una alta rotación de personal lo cual afecta la moral de los trabajadores y la productividad de los mismos.