Caso Kristen’s Cookies Company (Análisis y Resolución)

Un caso de estudio frecuentemente utilizado a nivel académico para presentar los principales resultados asociados a los Procesos Productivos se denomina por Kristen’s Cookies Company. El caso representa la situación a la que se enfrentan 2 socios en el negocio de elaborar galletas artesanales en un esquema bajo pedido, es decir, donde los productos se caracterizan por adaptarse a las necesidades particulares de cada cliente.

En este contexto al final de este artículo se incluye el archivo con la lectura del caso para su descarga el cual consta de 3 hojas (en español). Se recomienda fuertemente su lectura previa, de modo de favorecer la comprensión de los conceptos que presentaremos a continuación.

En primer lugar el lector podrá observar que si bien en el caso Kristen’s Cookies Company se hace una descripción detallada del proceso productivo de producción de galletas, no sé incluye explícitamente lo que conocemos como un Diagrama de Flujo de Proceso. Su elaboración es un paso vital previo para el análisis cuantitativo del desempeño del proceso. Con este objetivo a continuación se presenta una tabla resumen de las principales actividades vinculadas al proceso de producción de galletas artesanales.

actividades kristen cookies

En la tabla anterior se identifican las distintas etapas del proceso de transformación (tareas o actividades), las entradas o lo que da origen al inicio de cada una de las actividades, la salida o resultado esperado una vez concluida la actividad y los recursos productivos necesarios para llevar a cabo la actividad.

Por ejemplo para la etapa que hemos llamado «Lavar y mezclar la masa, «spoon» en las bandejas» se requiere disponer de los ingredientes y la emisión de un pedido para iniciar su atención. Los recursos que participan de dicha actividad son Kristen (mano de obra), una batidora, una cuchara y una bandeja donde pasar la masa cruda en forma de galletas (en condiciones reales por supuesto esto puede considerar más aspectos pero para fines de simplificación consideramos que esos son los recursos relevantes).

De este modo una vez recopilada la información del proceso, estamos en condiciones de elaborar un Diagrama de Flujo de Proceso como el que se presenta a continuación:

diagrama de procesos kristen cookies

En lo que sigue y para efectos del análisis asumiremos que el proceso productivo comienza en la etapa «Lavar y mezclar la masa, «spoon» en las bandejas» que si bien requiere que la emisión de pedido haya sido realizada previamente como esta actividad tiene un tiempo de cero minutos se asume despreciable.

Dicho esto a continuación analizaremos distintas preguntas de interés para este caso. Notar que no necesariamente se aborda aquellas interrogantes propuestas en la lectura, pero que de todos modos consideramos es útil su comprensión.

Pregunta N°1: Use una Carta Gantt para determinar el monto de tiempo que toma terminar tres ordenes de 1 docena (asuma clientes e ingredientes distintos). ¿Cuál es la capacidad del sistema?.

Es importante considerar el registro de los recursos productivos que son compartidos por más de una actividad. En este caso, el socio o amigo de Kristen y las bandejas son compartidas. En este sentido asumiremos que se dispone de un número suficientemente grande de bandejas, de modo que este recurso no sea un limitante para la atención de pedidos.

De este modo la Carta Gantt que representa la producción de 3 docenas de galletas para clientes distintos es: (por ejemplo, con color azul se representa al cliente A que pide una docena de galletas de avena; con color verde al cliente B que pide una docena de galletas de chocolate y con color rojo al cliente C que pide una docena de galletas de zanahoria).

carta gantt kristen cookies

En el caso del primer pedido de una docena de galletas, se requieren 8 minutos para concluir la etapa de la mezcla & spoon (6 minutos en mezclar los ingredientes y 2 minutos para pasar la masa cruda a una bandeja). Luego se pasa a la etapa de cocina (horno) donde se necesitan 10 minutos (el primer minuto para hacer un breve setup, por ejemplo, calibrar la temperatura y un reloj de control). Una vez horneadas las galletas se retiran éstas del horno (que puede hornear de una docena a la vez) y se dejan enfriar en su bandeja por 5 minutos en un lugar habilitado para ello (asumiremos que disponemos de espacio ilimitado para enfriar galletas). A continuación una vez enfriadas las galletas, éstas se empacan, lo cual requiere dos minutos, para finalmente hacer la entrega al cliente y recibir el pago que se asume requiere sólo un minuto.

Notar adicionalmente que llevamos registro del tiempo que tanto Kristen como su socio o amigo destinan para la elaboración de galletas. Por ejemplo, para atender los 3 primeros pedidos de una docena cada uno (asumiendo clientes distintos e ingredientes distintos) Kristen dedica los primeros 24 minutos de trabajo (8[min]*3). En cambio el amigo trabaja (en el orden que aparece en la Carta Gantt de izquierda a derecha): 1 minuto en el setup del horno de la primera docena, 1 minuto en el setup del horno de la segunda docena, 2 minutos para el empaque de la primera docena, 1 minuto para el pago de la primera docena, 1 minuto para el setup del horno de la tercera docena, 2 minutos para el empaque de la segunda docena, 1 minuto para el pago de la segunda docena, 2 minutos para el empaque de la tercera docena y 1 minuto para el pago de la tercera docena.

Considerando lo anterior se verifica (entre otros aspectos) que un recurso compartido (por ejemplo el amigo de Kristen) no se asigna a más de una función al mismo tiempo.

A través del análisis de la Carta Gantt también se corrobora que el Tiempo de Flujo de la primera docena de galletas es 26 minutos (tiempo que transcurre desde que se comienza a trabajar en el pedido hasta que concluye el pago). También se observa que la segunda docena termina 10 minutos más tarde que la primera y la tercera docena termina 10 minutos más tarde que la segunda (el lector puede corroborar que este patrón se repite en el tiempo). Luego en promedio se produce una docena cada 10 minutos (equivalente al Tiempo de Ciclo del proceso) y en consecuencia la Capacidad del Proceso es de 6 docenas por hora (donde la etapa de Cocinar u Horno es el Cuello de Botella).

Pregunta N°2: Considere que el tiempo para enfriar galletas es insuficiente y se ha decido aumentar su tiempo a 15 minutos. Construya una Carta Gantt que represente 2 pedidos de una docena de clientes e ingredientes distintos. ¿Cuál es la capacidad del proceso ahora?.

La representación del escenario anterior es la siguiente:

carta gantt dos docenas

Notar que si bien aumenta el Tiempo de Flujo del primer pedido en 10 minutos (ahora son 36 minutos), la Capacidad del Proceso NO cambia. Esto debido a que como se asume un número suficientemente grande de bandejas y espacio para dejar a enfriar, esta actividad no limita la capacidad del proceso productivo (es como si se pudiese enfriar infinitas docenas en paralelo).

No necesariamente la actividad que en términos individuales requiera mayor tiempo en un proceso será el cuello de botella.

En un futuro próximo continuaremos complementando este artículo incorporando otras preguntas relevantes para el análisis. Por el momento te invitamos a descargar el archivo con el caso Kristen’s Cookies Company a continuación.

[sociallocker]Kristens_cookie_company_Spanish[/sociallocker]

Árbol de Decisión (Qué es y para qué sirve)

Un Árbol de Decisión (o Árboles de Decisiones) es un método analítico que a través de una representación esquemática de las alternativas disponible facilita la toma de mejores decisiones, especialmente cuando existen riesgos, costos, beneficios y múltiples opciones. El nombre se deriva de la apariencia del modelo parecido a un árbol y su uso es amplio en el ámbito de la toma de decisiones bajo incertidumbre (Teoría de Decisiones) junto a otras herramientas como el Análisis del Punto de Equilibrio.

Los árboles de decisión son especialmente útiles cuando:

  1. Las alternativas o cursos de acción están bien definidas (por ejemplo: aceptar o rechazar una propuesta, aumentar o no la capacidad de producción, construir o no una nueva bodega, etc.)
  2. Las incertidumbres pueden ser cuantificadas (por ejemplo: probabilidad de éxito de una campaña publicitaria, probable efecto en ventas, probabilidad de pasar de etapas, etc.)
  3. Los objetivos están claros (por ejemplo: aumentar las ventas, maximizar utilidades, minimizar costos, etc.)

Árbol de Decisión (Ejercicio Resuelto)

La gerencia de una tienda debe decidir si debe construir una instalación pequeña o grande en otra ciudad. La demanda ahí puede ser baja o alta, con probabilidades estimadas de un 40% y 60%, respectivamente. Si se construye la instalación pequeña y la demanda resulta ser alta, el gerente puede decidir no expandirse (ganancia $223) o expandirse (ganancia $270). Si se construye una instalación pequeña y la demanda es baja, no hay razón para expandirse y la ganancia estimada en este caso es de $200. Por otro lado si se construye una instalación grande y la demanda resulta ser baja , la opción es no hacer nada (ganancia $40) o estimular la demanda con publicidad local. La respuesta a la publicidad puede ser modesta o considerable, con probabilidades estimadas de un 30% y 70%, respectivamente. Si es modesta, la ganancia estimada será sólo de $20; si la respuesta es considerable, la ganancia aumenta a $220; y por último, si construye una instalación grande y la demanda resulta ser alta, la ganancia estimada es de $800.

Dibuje un árbol de decisiones. Después analícelo para determinar el pago esperado de cada decisión y nodo de evento. ¿Qué alternativa tiene la ganancia esperada más alta?.

Para estos efectos es importante comprender la nomenclatura comúnmente utilizada para representar un árbol de decisión.

  1. Los nodos de decisión se anotan como cuadrados.
  2. Los nodos de incertidumbre se anotan como círculos.
  3. Los nodos de resultados finales se anotan como triángulos.
  4. Los eventos se unen con líneas o ramas del árbol.
  5. Los costos o beneficios asociados a una decisión o evento se anotan en la rama (para efectos de recordar aplicarlos al final de esa rama).
  6. Las probabilidades de un evento se anotan entre paréntesis en la rama correspondiente a ese evento.
  7. Los valores asociados a cada pago final se anotan junto al triangulo correspondiente, e incluyen costos asociados a la rama.
  8. Se diseñan comenzando por la decisión inicial, y una rama a la vez. Es importante tener claro el orden temporal de los eventos.
  9. Es importante distinguir entre eventos sobre los cuales se tiene poder de decisión, y aquellos que no.
  10. Se debe estimar el valor o resultado final de cada extremo del árbol.
  11. Se deben estimar o calcular las probabilidades de ocurrencia de los eventos inciertos.
  12. Se deben estimar los correspondientes valores esperados para cada rama del árbol. La resolución es hacia atrás.

A continuación se muestra un ejemplo de dicha notación aplicada a un problema descrito en el libro Administración de Operaciones, Producción y Cadena de Suministros, Duodécima Edición, Página 131, de los autores Chase, Jacobs y Aquilano. En dicha representación gráfica se puede apreciar la utilización de los elementos descritos en la nomenclatura anteriormente.

ejemplo árbol de decisión

En relación a nuestro ejemplo utilizaremos el software POM for Windows el cual se encuentra disponible junto al libro Administración de Operaciones, Procesos y Cadena de Suministro, Décima Edición, de los autores Krajewski, Ritzman y Malhotra. Notar que la versión del software utilizado no dispone de la opción de resultado final (triángulo) por tanto se ha dado término a cada ramificación utilizando un nodo (círculo) de incertidumbre.

árbol de decisiones

De esta forma la primera decisión consiste en construir una instalación pequeña o grande. Si la instalación es pequeña y la demanda es baja (con probabilidad de un 40%) no se hace nada y se obtiene $200 de ganancia, sin embargo, si la instalación es pequeña y la demanda es alta (con probabilidad de un 60%), nos enfrentamos a una segunda decisión: expandirse (con ganancia estimada de $270) o no expandirse (con ganancia estimada de $223).

Por otro lado si se decide por una instalación grande la demanda puede ser alta (con probabilidad de un 60%) en cuyo caso la ganancia es de $800 (y no se hace nada más) o la demanda puede ser baja (con probabilidad de un 40%), enfrentándose en este último caso a una nueva decisión: estimular o no la demanda. Si no se hace nada (es decir, si no se estimula la demanda) la ganancia será de $40 y si se estimula (realizar publicidad) la respuesta puede ser moderada (con probabilidad de un 30%) y ganancia estimada de $20 o considerable (con probabilidad estimada de un 70%) y ganancia de $220.

Luego de hacer la representación en POM for Windows del problema seleccionamos Solve para encontrar la solución que representa la mayor ganancia esperada. El resultado que ofrece el software se muestra a continuación:

ejercicio resuelto árbol de decisión

La gerencia por tanto debe construir la instalación grande con una ganancia esperada de $544 ($544=$160*0,4+$800*0,6 y además $160=$20*0,3+$220*0,7. La ganancia esperada asociada a la instalación pequeña es de $242). Notar que esta decisión (el tamaño de la instalación) es la única que se toma ahora. Las decisiones siguientes se toman después de ver si la demanda es baja o alta.

Para los usuarios que dispongan del software POM for Windows dejamos a continuación el archivo utilizado en este ejemplo para que pueda ser descargado. Alternativamente existen otros software que permiten la confección de árboles de decisión como PrecisionTree y TreePlan, ambos con opción de descarga gratuita durante un período de prueba.

[sociallocker]Ejemplo KPag 40[/sociallocker]

Estrategias de Procesos

En términos simples un proceso productivo consiste en una parte de una organización que toma insumos y los transforma en productos. Por cierto se espera que el valor de dichos productos sea mayor en comparación al valor de los insumos originales. En nuestro sitio en la categoría de Procesos, hemos dedicado un importante número de artículos que abordan el estudio de estos procesos de transformación desde una perspectiva tanto cuantitativa como cualitativa.

En esta oportunidad discutiremos las características principales de las estrategias de procesos y las clasificaciones frecuentemente aceptadas en la bibliografía de la Gestión de Operaciones que permite orientar el análisis estratégico de una empresa.

En primer lugar es importante destacar que las estrategias de procesos siguen un continuo y es perfectamente posible encontrar dentro de una compañía varias estrategias aplicadas de forma simultanea. Luego, las estrategias de procesos se clasifican básicamente en:

estrategias de procesos

Estrategia Orientada al Proceso

Esta corresponde a la configuración típica de talleres de trabajo conocidos también como Job Shop. Los distintos departamentos se organizan por proceso, agrupando aquellos que son similares. Se caracterizan por un volumen de producción relativamente bajo, no obstante tienen la flexibilidad para ofrecer una gran variedad de productos.

El siguiente diagrama representa un caso típico de la organización de un sistema productivo orientado al proceso, donde los productos siguen distintas rutas.

estrategia orientada al proceso

  • Ventajas

– Mayor flexibilidad de productos
– Equipamiento de propósito más general
– Baja inversión inicial

  • Desventajas

– Personal altamente entrenado
– Planificación y control de la producción mas complicado
– Baja utilización de equipamiento (en términos empíricos en un rango entre el 5% y el 25%)

Estrategia de Enfoque Repetitivo

En este caso la planta de producción se organiza como una línea de producción. Una representación esquemática de lo anterior se detalla en el siguiente diagrama donde el producto va desde la estación A hasta la estación C pasando por una secuencia de tareas determinadas por los requerimientos de ensamble del producto.

estrategia enfoque repetitivo

El proceso de ensamblaje de una moto como el que se muestra en la siguiente imagen corresponde a un esquema de producción que utiliza la estrategia de enfoque repetitivo. Esto se conoce alternativamente como un proceso tipo Flow Shop.

enfoque repetitivo

Estrategia Orientada al Producto

En este caso se observa un flujo continuo donde la planta de producción es organizada por producto. Se caracteriza adicionalmente por ser altamente automatizado y suele operar las 24 horas del día para evitar cierres y costos de arranque (setup) costosos.

  • Ventajas

– Bajo costo variable unitario
– Personal no tan competente, más especializado
– Fácil planificación y control de la producción
– Alta utilización de equipamiento (empíricamente entre el 70% y el 90%)

  • Desventajas

– Baja flexibilidad de productos
– Equipamiento más especializado
– Generalmente altas inversiones

Ejemplos típicos asociados a un proceso con un flujo continuo son aquellos vinculados a las actividades productivas del sector minero:

flujo continuo

Las principales características de los enfoques de procesos presentados se pueden consolidar a modo de resumen en una tabla, lo cual facilita el análisis comparativo.

comparación estrategias de procesos

En este mismo contexto se puede construir una Matriz de Proceso que en un eje de coordenadas que representa volúmenes de producción y variedad de productos, ayuda a identificar distintas estrategias.

matriz de procesos

Por ejemplo, una estrategia que se caracterice por un bajo volumen de producción y baja variedad de producto esta condenada al fracaso al enfrentar costos variables altos que no resultan ser competitivos.

En contraste alcanzar de forma simultanea volúmenes altos de producción y variedad de producto (conocido como personalización en masa o masiva «mass customization«) resulta difícil de alcanzar y promete importantes ventajas para aquellas empresas que las logran alcanzar. Un ejemplo emblemático de este caso ampliamente cubierto en la literatura es Dell Computer que le ha permitido compatibilizar productos a la medida de las necesidades de sus clientes mediante un ensamblaje a pedido sin sacrificar los beneficios de un alto volumen de producción.

Ejemplo del Cálculo del Punto de Equilibrio

En todo negocio un aspecto imprescindible consiste en evaluar la ganancia potencial de un producto o servicio, ya sea nuevo o existente. Se considera que los costos asociados a la producción de un producto o prestación de un servicio se puede dividir básicamente en 2 categorías: costos fijos (independientes del volumen de producción dentro de un rango de producción relevante) y costos variables (que varían directamente con el volumen de producción, asumiendo una relación lineal o proporcional). En este contexto el punto de equilibrio determina cuál debe ser el número de unidades vendidas que permite equiparar los ingresos totales con los costos totales, es decir, aquel volumen de ventas que evita pérdidas y ganancias.

Dado lo anterior queda de manifiesto la importancia de la evaluación del punto de equilibrio. El análisis se enfoca a responder preguntas del tipo:

  1. ¿Las ventas pronosticadas resultan ser suficientes para evitar pérdidas?

  2. ¿Cuánto debe bajar el costo variable unitario para alcanzar el punto de equilibrio, dadas las condiciones actuales de precios y proyecciones de ventas?

  3. ¿Cuál es el impacto del precio unitario en la obtención del punto de equilibrio?

  4. ¿Cuánto deben bajar los costos fijos para estar en una situación sin ganar o perder?

Sea CT=F+cQ el costo total de producir un bien o prestar un servicio, donde F es el costo fijo y cQ los costos variables (c es el costo unitario y Q la cantidad vendida). Adicionalmente sea IT=pQ el ingreso total, donde p es el precio unitario. El punto de equilibrio en términos de las unidades vendidas esta dado por:

formula-punto-de-equilibrio

Ejemplo Cálculo del Punto de Equilibrio

Una clínica esta evaluando un nuevo examen que reportará ingresos de $200 por paciente. El costo fijo anual será de $100.000 y los costos variables son de $100 por paciente. ¿Cuál es el punto de equilibrio para este servicio?.

Al evaluar en la fórmula anterior obtenemos lo siguiente:

ejemplo-punto-de-equilibrio

Es decir, si se realizan 1.000 exámenes (asumiendo un examen por paciente) los ingresos totales igualan a los costos totales, evitando tanto pérdidas como ganancias. De forma complementaria con la ayuda de Excel se puede evaluar de forma sencilla tanto los ingresos como costos totales para distintos niveles de actividad (en este caso número de exámenes o pacientes). La línea azul representa el ingreso total en miles de $ (eje vertical) para distintos valores de números de pacientes (eje horizontal). La línea roja representa el costo total donde resulta de particular interés observar que su valor es de $100 (mil) en el caso de cero pacientes (costo fijo).

punto-de-equilibrio-excel

Una representación alternativa del ejemplo anterior hemos desarrollado con Geogebra, la cual se muestra a continuación. El área achurada de color rojo representa la pérdida, es decir, cuando el número de pacientes es menor al punto de equilibrio, por el contrario el área achurada de color verde representa la ganancia, en la cual se incurre cuando el nivel de pacientes supera el punto de equilibrio.

grafica-punto-de-equilibrio

El Proceso de Transformación de Insumos en Productos o Servicios

Un proceso productivo consiste en un conjunto de actividades que toma como entradas uno o más insumos y los transforma para obtener como salidas o resultado un producto o servicio. En artículos anteriores hemos descrito que dicho proceso productivo puede tener distintas configuraciones, de modo ser compatible con la estrategia de procesos de la empresa, como aquellos con énfasis en el volumen de producción (Producción en Masa o Flow Shop) o por el contrario aquellos que privilegian la adaptación a necesidades particulares de los clientes con un volumen de producción acotado (Producción Tipo Taller o Job Shop). Por cierto la clasificación anterior constituye una simplificación del análisis dado que en la actualidad existe un auge por sistemas productivos híbridos que combinan elementos de las clasificaciones anteriores de modo de explotar sus ventajas relativas y ser más competitivos.

Proceso de Transformación de Insumos en Productos o Servicios

Una visión esquemática de lo que constituye un proceso de transformación típico se presenta a continuación:

proceso-de-transformacion-o

El área de Marketing procura que la salidas del proceso de transformación se transformen en ventas lo cual se convierte en rendimiento para los accionistas de la empresa. Por otro lado Finanzas busca garantizar la disponibilidad de recursos financieros para la adquisición de insumos y las inversiones en bienes de capital que sean necesarias para mantener la organización en un adecuado funcionamiento. Finalmente Operaciones (o equivalentemente la Gestión de Operaciones) se encarga de traducir los insumos o materiales en salidas (bienes y/o servicios) con énfasis en la productividad de dicho proceso de transformación. Cabe destacar que la descripción anterior simplifica los propósitos de las áreas funcionales de la empresa como también omite la contribución significativa de áreas (procesos) de apoyo y soporte como Recursos Humanos, Contabilidad, Sistemas de Información, entre otros.

En la siguiente tabla se presentan algunos ejemplos que ilustran distintos tipos de relaciones de insumos – transformación – producto:

ejemplos-procesos-de-transf

Por ejemplo en el caso de un servicio como un hospital los insumos primarios son los pacientes, los cuales son atendidos por médicos y enfermeras (además de paramédicos, administrativos, etc) que a su vez hacen uso de suministros médicos y equipamiento para prestar una atención médica (fisiológica) que sea satisfactoria y que idealmente resuelva de forma íntegra o parcial los requerimientos del paciente (dependiendo del caso).

Finalmente para efectos de evaluación del desempeño se requiere disponer de indicadores de gestión o KPI (Key Performance Indicator). En el contexto anterior resulta de particular interés el cálculo de la productividad, a saber, el valor de las salidas efectuadas dividido por la cantidad de los recursos de entrada, es decir:

formula-productividad

Por ejemplo, consideremos una empresa de la industria automotriz que fabrica 50 autos a la semana y que utiliza las siguientes entradas:

ejemplo-productividad-parci

De esta forma la productividad parcial del trabajo es de 0,25[u/hr], capital de 0,002[u/$] y energía 0,015[u/W]. En un próximo artículo abordaremos como incorporar en un ejemplo de esta naturaleza el concepto de productividad multifactorial.