El Método Húngaro como Algoritmo de Solución del Modelo de Asignación

Un caso típico de un modelo de asignación es aquel que considera la asignación de trabajadores de distintos niveles de capacitación a puestos de trabajo. Naturalmente un puesto que coincide con los conocimientos de un trabajador cuesta menos que uno en el que el trabajador no es tan hábil. El objetivo del modelo es determinar la asignación de costo mínimo de trabajadores a puestos.

Consideremos un problema con n trabajadores que deben ser asignados a n puestos de trabajo. Sea x_{ij} el costo de asignar al trabajador i al puesto j. Asumamos adicionalmente que cada trabajador debe realizar exactamente un trabajo. Notar que no existe pérdida de generalidad en asumir que la cantidad de trabajadores es igual a la cantidad de puestos, porque siempre se pueden agregar trabajadores o puestos ficticios para obtener esa condición.

El Método Húngaro consta de los siguientes pasos:

Paso 1: En la matriz original de costo, identificar el mínimo de cada fila y restarlo de todos los elementos de la fila.

Paso 2: En la matriz que resulte del Paso 1, identificar el mínimo de cada columna, y restarlo de todos los elementos de la columna.

Paso 3: Identificar la solución óptima como la asignación factible asociada con los elementos cero de la matriz obtenida en el Paso 2.

A continuación presentaremos un ejemplo que muestra la aplicación del Método Húngaro que nos permite decidir la asignación de trabajadores a puestos de trabajo.

Ejemplo Método Húngaro

Un equipo de 3 ingenieros debe ser asignado para la realización de 3 tareas, donde cada ingeniero debe hacer una tarea. Se requiere encontrar la asignación de costo mínimo para lo cual se dispone de los costos asociados a que el ingeniero i realice la tarea j. Por ejemplo, c_{11}=15 representa el costo correspondiente a que el ingeniero 1 asuma la tarea 1.

tabla-ingenieros-y-tareas

Aplicar el Método Húngaro para encontrar una asignación óptima de los ingenieros a las tareas.

El Paso 1 del Método Húngaro requiere identificar el valor mínimo de cada fila. En el caso de la fila 1 dicho valor es $9 siendo el costo de que el ingeniero realice la tarea 3. En particular si se dispone de un problema de mayor tamaño, hacer uso de Excel facilita los cálculos tal como se muestra en la siguiente imagen:

minimo-fila-hungaro

A continuación se resta el mínimo de cada fila a cada uno de los valores de la fila respectiva, para obtener la matriz reducida:

matriz-reducida-metodo-hung

La aplicación del Paso 2 produce los mínimos de cada columna según se observa en la tabla anterior. Al restar esos valores de las columnas respectivas se obtiene la siguiente matriz reducida:

solucion-metodo-hungaro

Las celdas con valor cero y color azul son la solución óptima. En consecuencia el ingeniero 1 realiza la tarea 2, el ingeniero 2 asuma la tarea 1 y el ingeniero 3 la tarea 3. Cada ingeniero realiza exactamente una tarea y el costo total de dicha asignación (valor óptimo) es de $9+$10+$8=$27. Los pasos presentados del Método Húngaro para el ejemplo anterior funcionaron bien debido a que los elementos cero de la matriz anterior permite una asignación factible de ingenieros a tareas (en el sentido que las tareas se asignan de forma única a los ingenieros). No siempre esto es posible lograr una solución factible en la aplicación caso en el cual se requiere pasos adicionales para la aplicación del método.

Reglas de Prioridad en la Programación de Trabajos con el Software LEKIN®

LEKIN® es un software gratuito e intuitivo que permite entre otras cosas la programación de n trabajos en una máquina. Este programa fue desarrollado en Stern School of Business, NYU, siendo la mayor parte de su diseño y programación a cargo de estudiantes de la Universidad de Columbia en Estados Unidos. El software LEKIN® fue creado como herramienta educacional con el propósito principal de difundir en los estudiantes conceptos de programación de trabajos y sus aplicaciones en la industria.

En el siguiente artículo detallaremos como implementar la regla de prioridad FIFO (First In First Out) o análogamente en su acrónimo en español PEPS (Primero en Entrar Primero en Salir). Para ello consideraremos un problema que consiste en la programación de 5 trabajos a una máquina, donde los tiempos de proceso son determinísticos (es decir, se asume que no hay incertidumbre respecto a la duración de cada trabajo) y el patrón de llegada es estático (Todos los trabajos llegan simultáneamente y de manera previa al inicio de las operaciones).

tabla-trabajos-con-fecha-de

Paso 1: Descargar el software LEKIN® (seleccionando Lekin.exe (1.67MB) según se muestra en la imagen) y seguir las instrucciones las instrucciones para su instalación.

descargar-lekin

Paso 2: Una vez instalado el programa y dadas las características de nuestro ejemplo, en el Menú Principal debemos seleccionar “Single Machine” (Una Máquina).

main-menu-lekin

Paso 3: A continuación ingresamos la cantidad de trabajos que necesitamos programar. En nuestro ejemplo son 5 trabajos. Luego seleccionamos “OK”.

single-machine-lekin

Paso 4: Ingresamos los datos de los trabajos en la interfaz que se muestra a continuación. Notar que hemos editado el nombre o etiqueta que identifica el trabajo (Job ID) el Tiempo de Procesamiento (Processing Time) y la Fecha de Entrega (Due Date). Al presionar “OK” se puede repetir el procedimiento para el resto de los trabajos.

add-jobs-lekin

Paso 5: En el menú del programa seleccionamos “Schedule” ==> “Rule” ==> “4 FCFS” (FCFS es equivalente a FIFO o PEPS).

fcfs-lekin

LEKIN® genera una Carta Gantt donde se muestra la programación de los trabajos y el tiempo total o makespan para concluir la totalidad de éstos (80 días). Adicionalmente según se aprecia en “Job Pool” se detalla el día en que se da inicio y término a cada uno de los trabajos.

carta-gantt-lekin

Paso 6: Finalmente en el Menú “Tools” (Herramienta) ejecutamos la opción “Performance”.

tools-lekin

Esto permite obtener un cuadro resumen con los principales indicadores de gestión de la programación según se observa en la imagen:

shop-perfomance-lekin

De donde se corrobora los siguientes resultados según lo obtenido previamente en el artículo: Reglas de Prioridad para la Programación de n Trabajos en una Máquina.

  • Tiempo de Flujo Promedio = 245[días]/5[trabajos]=49[días/trabajo]
  • Tiempo de Atraso Promedio = 108[días]/5[trabajos]=21,6[días/trabajo]
  • Atraso Máximo = 40[días]
  • Número de Trabajos Atrasados = 3[trabajos]
  • Makespan = 80[días]

Conclusiones: El software LEKIN® puede ser utilizado tanto para la aplicación de otras reglas de prioridad en el contexto del ejemplo anterior (según se puede apreciar en el Paso 5 de este tutorial) como también en otras problemáticas relativas a la Programación de Tareas. Una de las ventajas del programa es que su distribución es gratuita y además resulta ser compatible aún con las versiones más recientes de Windows (teniendo en cuenta que su última actualización data de Abril de 2002). Lo anterior ha sido corroborado en la utilización de este software sin inconvenientes en un computador con sistema operativo Windows 7 Home Premium de 64 bits. Lo anterior constituye una ventaja en comparación a otras herramientas como WINQSB que requiere el uso de máquinas virtuales si se desea utilizar en versiones recientes del sistema operativo Windows.

Actualización (Febrero 2017): Se dispone de una versión más reciente del software LEKIN® que la utilizada en este tutorial y cuya fecha de actualización corresponde al mes de Octubre de 2010 y puede ser descargada en el siguiente enlace: Descargar LEKIN® (2010).

Cómo instalar WinQSB en un computador con Sistema Operativo Windows 7

Lamentablemente el popular software WinQSB (muy útil como herramienta de análisis para cursos de Gestión de Operaciones e Investigación de Operaciones) el cual hemos utilizado en artículos anteriores en el blog no es compatible con las últimas versiones de sistema operativo Windows, en particular con Windows 7 y tampoco lo es con Windows 8 o con la reciente versión disponible de Windows 10 que Microsoft ha dispuesto para descarga e instalación gratuita por parte de los usuarios. Si bien existen alternativas en la red donde podemos descargar el programa quedará en evidencia la incompatibilidad según se muestra en la imagen a continuación:

winqsb-incompatible-con-win

En nuestra experiencia WinQSB ha funcionado sin inconvenientes en una versión de 34 bits de Windows Vista pero desconocemos desde que versión de Windows exactamente ya no es posible su utilización (lo más probable es que justamente sea a contar de la versión de Windows 7).

¿Qué podemos hacer entonces para utilizar WinQSB en una versión más reciente de Windows?. En una frase esta pregunta no es fácil de responder, sin embargo, te sugerimos los siguientes pasos:

1. Verifica con exactitud que versión de Windows tienes. Para ello haz clic en el botón InicioImagen del botón Inicio, luego con el botón secundario en Equipo y finalmente en Propiedades.

windows-7-home-premium

2. Intenta si es posible instalar Windows XP Mode. Con Windows XP Mode se pueden ejecutar programas diseñados para Windows XP en equipos con las ediciones Professional, Enterprise o Ultimate de Windows 7. Lamentablemente Windows XP Mode no se admite en Windows 8. (Lee detenidamente las instrucciones disponibles en: http://windows.microsoft.com/es-xl/windows7/install-and-use-windows-xp-mode-in-windows-7).

Como podrás haber apreciado nuestra versión de Windows 7 es Home Premium la que en principio sería incompatible con XP Mode. Si tienes la edición ProfessionalEnterprise o Ultimate te agradeceríamos nos puedas compartir tu experiencia en la instalación de Windows XP Mode y luego la utilización de WinQSB (para ello puedes agregar tus comentarios a este artículo, te agradecemos de antemano!).

Cómo secuenciar n Trabajos en una Máquina para minimizar Setup

El orden o secuencia en el cual se programan n trabajos en una máquina es significativo a la hora de estimar los tiempos de setup para pasar de un determinado trabajo a otro o incluso comenzar con cualquiera de ellos al inicio de la planificación.

En este contexto se reconoce formalmente como tiempo de setup la cantidad de tiempo necesario para preparar una máquina para realizar una operación diferente y cumplir con las especificaciones del cliente (estos tiempos de setup pueden representar por ejemplo calibración de la máquina, cambio de formatos, limpieza, mantención preventiva, etc).

En el siguiente artículo formularemos y resolveremos un modelo de Programación Entera que permita encontrar una secuenciación óptima de n trabajos en una máquina, lo cual será contrastado con la solución que se puede obtener por simple enumeración de secuencias, naturalmente para un número de trabajos «pequeño» (para fines académicos).

En general si se deben programar n trabajos en una máquina, la cantidad de secuencias posibles son n!.

Por ejemplo si tenemos 3 trabajos (n=3) que debemos asignar a una máquina la cantidad de secuencias posibles son 6 (3!=3*2*1). Lo anterior implica que aún para centros de trabajos pequeños es útil contar con un procedimiento que permita identificar aquella secuencia que minimice el makespan sin tener la necesidad de hacer una evaluación exhaustiva de cada una de ellas.

Consideremos un conjunto de trabajos que necesitan ser asignados a una cierta máquina, todos los cuales están disponibles al inicio de la programación y se conoce los tiempos de proceso y fechas de entrega como muestra la siguiente tabla:

tabla-tiempos-procesos-y-en

Sin embargo, el tiempo de setup, correspondiente al tiempo requerido para preparar la máquina antes de cada trabajo, depende del trabajo que le precede. A continuación se indica los tiempos de setup aij cuando al trabajo j le precede el trabajo i:

tabla-tiempos-de-setup

Adicionalmente hay un tiempo de setup a0j asociado al primer trabajo a programar de acuerdo a los siguientes valores:

tiempos-de-setup-inicial

El objetivo entonces es programar las actividades de modo de minimizar el tiempo de utilización de la máquina (makespan) como resultado de la asignación propuesta. Notar que según lo descrito anteriormente el problema admite 6 secuencias posibles las cuales se enumeran a continuación para poder obtener el makespan de la programación.

  • Secuencia 1-2-3: 1+9+1+13+3+10=37[t]
  • Secuencia 1-3-2: 1+9+0+10+1+13=34[t]
  • Secuencia 2-1-3: 3+13+2+9+0+10=37[t]
  • Secuencia 2-3-1: 3+13+3+10+3+9=41[t]
  • Secuencia 3-1-2: 4+10+3+9+1+13=40[t]
  • Secuencia 3-2-1: 4+10+1+13+2+9=39[t]

Naturalmente la secuencia óptima es 1-3-2 con un makespan de 34[t]. Como el trabajo 1 es el que inicia la secuencia tiene un setup inicial de a01=1 y requiere de 9[t] para ser completado. A continuación sigue el trabajo 3 que dura 10[t] y como es el trabajo 1 el que le precede no se requiere tiempo de setup (a13=0). Finalmente se realiza el trabajo 2 con duración de 13[t], necesitándose 1[t] para pasar del trabajo 3 al trabajo 2 (a32=1).

Para abordar el problema anterior a través de un modelo de optimización definiremos el siguiente problema de Programación Entera que claramente permite extender su aplicación a problemas de mayor tamaño (número de trabajos):

Variables de Decisión:

variables-de-decision-probl

Para i=1,2,3j=0,1,2,3 con i≠j. Por ejemplo si X10=1 esto indica que el trabajo 1 es el que se realiza inmediatamente después del trabajo 0, es decir, el trabajo 1 es el que inicia la secuencia.

Función Objetivo:

En la implementación computacional con Solver de Excel la función objetivo se representa a través de la siguiente fórmula:

formula-funcion-objetivo-pr

Para mayor claridad a continuación un extracto de la pantalla del modelo computacional:

formula-funcion-objetivo-se

Se busca minimizar el makespan de la secuencia. Notar que se suman las constantes asociadas al tiempo de proceso de cada trabajo (las cuales son independientes de la secuencia y justifican que inicialmente el valor de la celda que representa la función objetivo sea igual a 32[t]) y que eventualmente se pueden omitir de la función objetivo (en dicho caso el valor óptimo representaría la sumatoria de los tiempos de setup de la secuencia y no el makespan de la programación).

Restricciones:

Se deben realizar los 3 trabajos:

se-deben-realizar-los-traba

A lo más una tarea sigue a la j-ésima al menos que sea la última de la secuencia:

a-lo-mas-una-tarea-sigue-a-

Alternativas infactibles: (celdas color rojo en la planilla de cálculo)

alternativas-infactibles-se

Debe existir un trabajo inicial en la secuencia:

trabajo-inicial-setup

Luego de resolver con Solver el problema anterior se alcanza la siguiente solución óptima y valor óptimo:

solucion-optima-problema-se

Donde se corrobora que la secuencia óptima es 1-3-2 con un makespan de 34[t]. A continuación puedes descargar el archivo Excel con la resolución del problema anterior en el siguiente enlace: Minimizar Tiempos de Setup.

Algoritmo de Moore aplicado a la Programación de Trabajos

En el contexto de las Reglas de Prioridad para Programar n trabajos en una Máquina, el Algoritmo de Moore tiene por objetivo minimizar el número de trabajos atrasados, independientemente de cuán atrasados estén.

Este criterio es especialmente útil cuando existen penalizaciones por concepto de atraso, las cuales en algunas ocasiones se activan por el hecho de no responder a tiempo una fecha de entrega comprometida aun cuando el atraso en su magnitud pudiese haber sido mínimo. La descripción general del algoritmo consta de 4 pasos según se describe a continuación:

Algoritmo de Moore

Paso 1. Ordenar los trabajos de acuerdo a la regla de prioridad EDD (Earliest Due Date o Fecha de Entrega más Próxima).
Paso 2. Seleccionar el primer trabajo atrasado en la secuencia actual, digamos el trabajo i. Si no hay ninguno atrasado siga al Paso 4.
Paso 3. Considere los trabajos 1 al i. Rechace el trabajo con mayor tiempo de proceso, vuelva al Paso 2.
Paso 4. Forme la secuencia que resulta de tomar la secuencia actual y colocar todos los trabajos rechazados al final.

Si luego de realizar la primera iteración del Algoritmo de Moore existe un nuevo trabajo atrasado (asumiendo que en la iteración 1 se rechazo un trabajo, digamos trabajo A), dicho trabajo se rechaza (digamos trabajo B) y se envía al «final de la secuencia», entendiendo por ello que desde la perspectiva del número de trabajos atrasados (objetivo del algoritmo) resulta indistinto que la secuencia final termine con A-B o con B-A. Si fuese necesario realizar una tercera iteración (o más) se procede bajo el mismo criterio.

Ejemplo Algoritmo de Moore en Programación de Trabajos

Consideremos el siguiente ejemplo en el cual se deben programar 6 trabajos en una máquina, donde se ilustra la aplicación del Algoritmo de Moore:

tabla-algoritmo-de-moore

Paso 1. Ordenamos los trabajos según la regla de prioridad EDD obteniendo la secuencia B-A-E-D-C-F (notar que los trabajos se secuencian desde el que tiene fecha de entrega más próxima al que tiene fecha de entrega más lejana).

edd-algoritmo-de-moore

Paso 2. Seleccionamos el primer trabajo atrasado en la secuencia actual (al que llamaremos trabajo «i«). En el ejemplo dicho trabajo corresponde a E.

Paso 3. Consideramos los trabajos del 1 al i (en el ejemplo de B a E) y rechazamos el que tiene mayor tiempo de proceso (en el ejemplo el trabajo A).

Paso 4. En la secuencia actual colocar los trabajos rechazados al final. De esta forma la nueva secuencia sería B-E-D-C-F-A que por supuesto tiene idéntico makespan (23[días]) y sólo un trabajo atrasado (trabajo A).

algoritmo-de-moore-final

La Carta Gantt para la secuencia propuesta por el Algoritmo de Moore es la siguiente:

carta-gantt-algoritmo-de-mo

Se propone al lector aplicar otras reglas de prioridad (por ejemplo FIFO, LIFO, SPT, LPT, EDD, etc) y corroborar que el Algoritmo de Moore permite efectivamente minimizar el número de trabajos atrasados en el contexto de las características del problema anterior.

Por cierto pueden existir otras reglas de prioridad que permitan tener un trabajo atrasado para el ejemplo propuesto, sin embargo, no debiésemos esperar que exista una secuencia que omitamos que evite tener trabajos atrasados.