Problema de Producción e Inventario resuelto con Solver de Excel

La Programación Lineal nos permite abordar distintos problemas de naturaleza real algunos de los cuales ya hemos tratado en artículos anteriores como el Problema de Transporte, el Problema de Mezcla de Productos y el Problema de la Dieta.

En el siguiente artículo analizaremos otra aplicación clásica conocida como el Problema de Producción e Inventario cuyas extensiones y variantes se pueden consultar adicionalmente en la categoría del Plan Maestro de la Producción.

El Problema de Producción e Inventario consiste básicamente en determinar una política de producción en el tiempo que permita satisfacer ciertos requerimientos de demanda, respetando las limitantes de producción y a un costo mínimo.

Este tipo de modelos se puede extender para varios productos, sin embargo, en esta oportunidad consideraremos un solo producto para su ilustración.

En este contexto, consideremos los siguientes antecedentes de producción que se presentan a continuación:

producción e inventario

Luego, definimos el siguiente modelo de optimización lineal:

Supuesto: se dispone de un inventario inicial de 50 unidades, es decir, I0=50.

1. Variables de Decisión:

  • Xt: Unidades a producir en el mes t (t=1,..,6 con t=1 => Enero; t=6 => Junio)
  • It: Unidades a almacenar en inventario al final del mes t (t=1,..,6 con t=1 => Enero; t=6 => Junio)

2. Función Objetivo: Minimizar los costos de producción (destacados con color azul) y costos de inventario (destacados con color rojo) durante el período de planificación definido por:

60X1 + 60X2 + 55X3 + 55X4 + 50X5 + 50X6 + 15I1 + 15I2 + 20I3 + 20I4 + 20I5 + 20I6

De forma compacta (parametrica) se puede representar la función objetivo como:

Minimizar\sum_{t=1}^{6}[C_{t}\cdot X_{t}+H_{t}\cdot I_{t}]

Donde C_{t} es el costo unitario de producción en el mes t (por ejemplo C_{1}=60) y H_{t} es el costo unitario de almacenar unidades en inventario durante el mes t (por ejemplo H_{1}=15)

3. Restricciones:

a) Satisfacer los requerimientos de demanda (conocida como restricción de Balance de Inventario).

Por ejemplo, el inventario disponible al final del mes de Enero será el resultado de la producción del mismo mes, más el inventario inicial (que se asume un dato, en este caso 50 unidades) menos la demanda satisfecha durante el mes de Enero.

  • X1 + 50 – I1 = 100 (Enero)
  • X2 + I1 – I2 = 130 (Febrero)
  • X3 + I2 – I3 = 160 (Marzo)
  • X4 + I3 – I4 = 160 (Abril)
  • X5 + I4 – I5 = 140 (Mayo)
  • X6 + I5 – I6 = 140 (Junio)

Notar que la restricción se Balance de Inventario impuesta para un producto se puede generalizar como: X_{t}+I_{t-1}-I_{t}=d_{t}, donde d_{t} representa la demanda estimada (parámetro) para el mes t.

b) Respetar la capacidad máxima de producción mensual (oferta).

Se establece que la oferta o producción máxima mensual no puede superar la capacidad de producción.

X1<=120   X2<=120   X3<=150   X4<=150   X5<=150   X6<=150

O simplemente X_{t}\leq O_{t} donde O_{t} es la capacidad de producción máxima del mes t (parámetro).

c) Condiciones de no negatividad.

De forma natural y dada nuestra definición cada variable de decisión debe ser no negativa.

Xt >= 0    It >= 0  Para todo t

El siguiente tutorial muestra cómo implementar este Modelo de Producción e Inventario correspondiente a la Programación Lineal en Solver de Excel:

La solución óptima se muestra a continuación con un valor óptimo de $43.450. Se puede apreciar que se producen en total 780 unidades entre Enero y Junio las cuales junto al inventario inicial de 50 unidades permiten satisfacer los requerimientos de demanda mensualmente.

solución problema producción e inventario

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Cómo detectar que un Problema es No Acotado con el Método Simplex

El Método Simplex es un algoritmo que nos permite resolver modelos de Programación Lineal que en ciertas ocasiones permite identificar casos excepcionales como infinitas soluciones óptimas o que el problema es no acotado. En este contexto el Método Simplex rescata las condiciones establecidas en el Teorema Fundamental de la Programación Lineal.

En la aplicación del Método Simplex, un problema no acotado se detecta cuando en una iteración cualquiera existe una variable no básica con costo reducido negativo y todos los elementos en la columna de dicha variable son negativos o cero. Es decir, no se puede seleccionar un pivote para determinar la variable que debe dejar la base.

Consideremos el siguiente modelo de Programación Lineal:

modelo lineal no acotado

Si resolvemos gráficamente dicho modelo nos podemos percatar que éste es no acotado. Notar que el dominio de soluciones factibles (área sombreada o achurada) es no acotado dado que crece indefinidamente en la dirección de la variable X2.

Las curvas de nivel de la función objetivo crecen a su mayor tasa en la dirección del vector gradiente \triangledown f(X_{1},X_{2})=(4,6) lo que indica que se podría desplazar indefinidamente en esa dirección y siempre interceptar el dominio de soluciones factibles.

problema no acotado

¿Cómo podemos detectar esta situación (Problema No Acotado? utilizando el Método Simplex?

Para ello llevamos el modelo a su forma estándar, agregando X3 y X4 como variables de holgura de la restricción 1 y 2, respectivamente. Lo anterior define la siguiente tabla inicial del método:

método simplex no acotado

Notar que X2 es la variable no básica con el costo reducido más negativo y siguiendo ese criterio debería ser aquella que ingresamos a la base. Sin embargo, no es factible hacer el criterio de factibilidad o mínimo cuociente debido a que los elementos en la columna de X2 son negativos o cero. En esta instancia ya se puede afirmar que el problema es no acotado.

Observación: Se puede verificar que si seleccionamos X1 como la variable que entra a la base y se aplica una iteración del Método Simplex se llegara a una conclusión similar a la presentada anteriormente.

Instalación del Complemento Solver en Excel 2003

El complemento de Solver de Excel es una poderosa herramienta que permite resolver modelos de optimización utilizando una planilla de cálculo (Excel). En artículos anteriores hemos mostrado Cómo resolver Modelos de Programación Lineal utilizando Solver y algunas aplicaciones clásicas como el Problema de Transporte y Problema de la Dieta.

Las características de Solver han evolucionado en las distintas versiones de Office y en esta oportunidad mostraremos cómo activar este complemento en la versión del año 2003 y 2007. Para ello se deben seguir los siguientes pasos:

Paso 1: Abrir el programa Excel y en el menú de Herramientas seleccionar Complementos. 

Complementos Excel

Paso 2: Seleccionar la opción Solver y luego Aceptar.

Complemento Solver

Paso 3: Puede ser necesario aprobar la ejecución del complemento como muestra la imagen a continuación. En este caso se debe seleccionar

Instalar Solver

Paso 4: Una vez completada la activación de Solver el complemento estará disponible en el menú de Herramientas de Excel.

Solver Instalado

Una alternativa a Solver es el complemento de Excel OpenSolver el cual se puede descargar gratuitamente desde www.opensolver.org. En el artículo Cómo resolver un modelo de Programación Lineal con OpenSolver mostramos su utilización en un problema sencillo. Adicionalmente What’sBest! resulta ser otra excelente alternativa para Solver y desarrollado para Excel. En el siguiente tutorial detallamos cómo descargar e instalar What’sBest!.

Teorema de Holguras Complementarias: Dualidad en Programación Lineal

Uno de los teoremas principales en la Teoría de Dualidad en Programación Lineal es el Teorema de Holguras Complementarias.

El Teorema de Holguras Complementarias nos permite encontrar la solución óptima del Problema Dual cuando conocemos la solución óptima del Problema Primal (y viceversa) a través de la resolución de un sistema de ecuaciones conformado por las variables de decisión (primales y duales) y las restricciones (del modelo primal y dual).

La importancia de este teorema radica en que facilita la resolución de los modelos de optimización lineal, permitiendo a quién los resuelve buscar el modelo más sencillo para abordar (desde el punto de vista algorítmico) dado que de cualquier forma podrá obtener los resultados del modelo equivalente asociado (sea éste el modelo primal o dual).

Ejemplo Teorema de Holguras Complementarias

Consideremos el siguiente modelo de Programación Lineal (en adelante Primal) en 2 variables cuya solución óptima obtenida por el Método Gráfico es X=14/5 e Y=8/5 con valor óptimo V(P)=20,8.

Modelo Lineal 2

El modelo Dual asociado al modelo primal es: (ante dudas de cómo pasar del problema primal al problema dual se recomienda revisar el artículo Relaciones de Dualidad en Programación Lineal (Cómo pasar de Primal a Dual))

Modelo Dual

Luego, el Teorema de Holguras Complementarias plantea las siguientes relaciones:

Teorema de Holguras Complementarias

Como sabemos X=14/5 e Y=8/5 (Solución Básica Factible Óptima del modelo primal). Si reemplazamos estos valores de X e Y en la tercera y cuarta ecuación generamos un sistema de ecuaciones de 2×2 en términos de A y B cuya solución corresponde a A=6/5 y B=2/5 (solución óptima del modelo dual). Si posteriormente evaluamos en la función objetivo del problema dual dicha solución obtenemos: V(D)=12(6/5)+16(2/5)=20,8 que es similar al valor óptimo del problema primal (Teorema de Dualidad Fuerte).

Siendo A=6/5 y B=2/5 una solución factible para el problema dual, ésta es la solución optima de dicho problema.

Observaciones: Notar que la restricción 1 y 2 del problema primal son activas en el óptimo, es decir, se cumplen en igualdad. Esto permite descartar que A y B (variables duales asociadas a dichas restricciones) son iguales a cero.  Si por ejemplo, la restricción 1 del modelo primal no fuese activa en el óptimo se podría afirmar que A es igual a cero en el dual.

Ejercicio Teorema de Holguras Complementarias en Programación Lineal

Una empresa que fabrica muebles desea estudiar la producción de varios tipos de mesas de madera. Las mesas a fabricar son mesas de comedor, de centro y de arrimo, las que deben ser procesadas por 3 tipos de máquinas, una cortadora, una ensambladora y una pulidora. Se dispone de a lo mas de 80 horas de trabajo en cada una de las máquinas y 2.000 unidades de madera. La siguiente tabla muestra los tiempos y la madera necesaria para la fabricación de cada mesa, así como la utilidad que reporta cada una de ellas.

tabla recursos producción mesas

Dadas las siguientes soluciones del Problema Primal S1=(900,100,0), S2=(176,496,656), S3=(200,400,550) y S4=(800,0,400). Determine mediante el Teorema de Holguras Complementarias si alguna de estas soluciones es óptima para el Problema Primal planteado.

Sea el Problema Primal el siguiente:

Variables de Decisión: 

  • X1 : Cantidad de mesas de comedor a producir
  • X2 : Cantidad de mesas de centro a producir
  • X3 : Cantidad de mesas de arrimo a producir

Función Objetivo:

MAX Z = 3 X1 + 3 X2 + 2 X3

Restricciones:

  • 5 X1 + 3 X2 + 2 X3 <= 4.800 (tiempo cortadora)
  • 2 X1 + 5 X2 + 3 X3 <= 4.800 (tiempo ensambladora)
  • 3 X1 + 2 X2 + 5 X3 <= 4.800 (tiempo pulidora)
  • 2 X1 + 2 X2 + 1 X3 <= 2.000 (disponibilidad de madera)
  • X1>=0, X2>=0, X3>=0

Su correspondiente Problema Dual asociado es:

MIN  W = 4.800 Y1 + 4.800 Y2 + 4.800 Y3 + 2.000 Y4
S.A.

  • 5 Y1 + 2 Y2 + 3 Y3 + 2 Y4 >= 3
  • 3 Y1 + 5 Y2 + 2 Y3 + 2 Y4 >= 3
  • 2 Y1 + 3 Y2 + 5 Y3 + 1 Y4 >= 2
  • Y1>= 0, Y2>=0, Y3>=0, Y4>=0

A continuación verificamos la factibilidad de las soluciones propuestas para el Problema Primal:

S1=(900,100,0), V(S1)=3.000 Satisface todas las restricciones
S2=(176,496,656) V(S2)=3.328 Satisface todas las restricciones
S3=(200,400,550) V(S3)=2.900 Satisface todas las restricciones
S4=(800,0,400) V(S4)=3.200 Satisface todas las restricciones

Todas las soluciones satisfacen todas las restricciones por lo que son todas soluciones factibles. De ellas se escoge S2 ya que entrega la mayor utilidad para verificar si es solución óptima: X1=176, X2=496, X3=656.

En restricción (1) holgura X4 = 1.120
En restricción (2) holgura X5 = 0
En restricción (3) holgura X6 = 0
En restricción (4) holgura X7 = 0

De esta forma el Teorema de Holguras Complementarias permite obtener lo siguiente:

sistema holguras complementarias

Que al ser reducido permite obtener un sistema de ecuaciones de 3×3:

  • 2 Y2 + 3 Y3 + 2 Y4  = 3
  • 5 Y2 + 2 Y3 + 2 Y4  = 3
  • 3 Y2 + 5 Y3 + 1 Y4  = 2

Solución Problema Dual : Y1=0, Y2=1/25, Y3=3/25, Y4=32/25. Al evaluar la solución alcanzada en la función objetivo del dual se obtiene: W=4.800*0+4.800*1/25+4.800*3/25+2.000*32/25=3.328. Por el Teorema de Dualidad Fuerte W=Z por lo tanto S2 es solución óptima del Problema Dual.

Interpretación del Informe de Sensibilidad de Restricciones de Solver

Continuando con el Análisis de Sensibilidad (o Análisis Postoptimal) en la resolución de modelos de Programación Lineal, en este artículo analizaremos la interpretación del Informe de Sensibilidad (o Informe de Confidencialidad en algunas de las versiones de Office que datan del año 2010 a la fecha) de restricciones de Solver, comúnmente conocido como el análisis del Precio Sombra de cada una de las restricciones.

Por ejemplo, la versión de Solver disponible con Office 365 ofrece la siguiente interfaz para obtener el Informe de Sensibilidad (luego de alcanzar la solución óptima del problema en su escenario base).

informe sensibilidad solver office 365

En el caso de la versión de Solver compatible con Office 2007 y Office 2003, la interfaz es la siguiente:

Sensibilidad Solver

De modo de ilustrar su correcta interpretación, a continuación consideraremos nuevamente nuestro ejemplo de Programación Lineal:

Modelo Lineal 2

Con solución óptima X=14/5 Y=8/5 y valor óptimo V(P)=20,8. El Informe de Restricciones de Solver corresponde a:

Informe Restricciones

Las filas del Informe de Restricciones corresponden a las restricciones 1 y 2, respectivamente.

En el caso de la restricción 1 el Precio Sombra es de 1,2 y el valor de la restricción (lado derecho) es igual a 12. Para dicho parámetro (lado derecho) se permite un aumento de de 9,33 y una disminución de 4, es decir, el lado derecho de la restricción 1 puede variar entre [8, 21,33] (12-4, 12+9,33) y el Precio Sombra de magnitud 1,2 seguirá siendo válido (es decir, se conserva la base óptima).

Esto significa que si, por ejemplo, el lado derecho de la restricción 1 aumenta en 1 unidad y el resto de los parámetros del modelo permanecen constantes, el nuevo valor óptimo será: V(P)=20,8+1*1,2=22.

Ahora bien, si por ejemplo, el lado derecho de la restricción 1 disminuye a 10 el nuevo valor óptimo será: V(P)=20,8-2*1,2=18,4.

Finalmente si la variación del lado derecho esta fuera del intervalo [8, 21,33] NO se puede utilizar el Precio Sombra para poder predecir cuál será el nuevo valor óptimo. Esto se debe a que la nueva solución óptima ya no se encontrará con las mismas restricciones activas, es decir, cambia la base óptima.

Al respecto recomendamos ver el tutorial sobre Cómo calcular gráficamente el Precio Sombra de una Restricción.

De forma análoga, para la restricción 2 el Precio Sombra es de 0,4 y este valor es válido si su lado derecho varía entre [9, 24] (16-7, 16+8). Por ejemplo, si el lado derecho de la restricción 2 aumenta en 3 unidades (y el resto de los parámetros permanece constante) el nuevo valor óptimo será: V(P)=20,8+3*0,4=22.