Gestión de Operaciones

Ejemplo de Gráfica de Control P o de Proporciones en el Control Estadístico de Procesos

La gráfica de control de proporciones o gráfica p corresponde a una herramienta del Control Estadístico de Procesos (CEP) utilizada particularmente en la evaluación del cumplimiento de determinadas características del producto que son fáciles de evaluar (con frecuencia mediante inspección visual) asumiendo sólo 2 valores posibles: «cumple» o «no cumple», «aprobado» o «no aprobado», etc. Utilizar datos de atributos requiere de muestras relativamente grandes para obtener resultados estadísticos válidos. En el siguiente artículo de describe el procedimiento para la confección de una gráfica p utilizando distintos niveles de significancia estadística al momento de definir los límites de control.

Ejemplo Gráfica de Control P

Todos los días se tomaban muestras de las formas llenas, de un departamento en particular, en una compañía de seguros para revisar la calidad del desempeño de ese departamento. Con el fin de establecer una norma tentativa para el departamento, se tomó una muestra de 300 unidades al día (n=300) durante 10 días, obteniendo los siguientes resultados:

Desarrolle una gráfica de proporciones o gráfica p utilizando un intervalo de confianza de un 90% para las 10 muestras recolectadas. ¿Qué comentarios puede hacer sobre el proceso?. ¿Qué sucede ahora si los límites de control se definen a un σ del promedio de defectos?.

En primer lugar calculamos el promedio de unidades defectuosas para cada una de las muestras (celdas color celeste). Por ejemplo la muestra 1 presenta 10 defectos (de un total de 300 unidades inspeccionadas), en consecuencia el porcentaje de defectos de dicha muestra corresponde aproximadamente a un 3,33% (10/300). Luego se obtiene el promedio de unidades defectuosas del total de las muestras (celda amarilla) correspondiente a un 3,03% (se obtiene de [3,33%+2,67%+3,00%+…+2,67%]/10).

A continuación se procede con la estimación de la desviación estándar (Sp):

De la tabla de la distribución normal estándar un intervalo de confianza de un 90% equivale a definir los límites de control a 1,645*Sp. Con esto podemos calcular el Límite de Control superior (LCS) y Límite de Control Inferior (LCI) respectivamente (notar que los resultados han sido aproximados).

A continuación y con la ayuda de Excel se procede a graficar los límites de control (líneas verdes y violeta), el promedio de unidades defectuosas de cada una de las muestras (línea azul) y el promedio de defectos total (línea roja). El proceso se encuentra bajo control estadístico. Los promedios de defectuosos se encuentran dentro de los límites de control estadístico.

Si en cambio los límites de control se definen a un σ del promedio de defectos será necesario recalcular los límites de control estadístico obteniendo los siguientes resultados (aproximados):

Al estrechar los límites de control el proceso ya no se encuentra bajo control estadístico. La muestra n° 4 presenta un porcentaje de defectuosos mayor al LCS.

Salir de la versión móvil