En el análisis del comportamiento de las Líneas de Espera, se reconoce que el proceso de llegada de los clientes al sistema ocurre de forma totalmente aleatoria. Se entiende por aleatorio que la ocurrencia de un evento no se ve afectado por el tiempo transcurrido desde la ocurrencia de un evento anterior. Por ejemplo, si en estos momentos son las 10:30 y la última llegada de un cliente fue a las 10:15, la probabilidad de que la siguiente llegada sea a las 10:35 es función sólo de las 10:30 a las 10:35 y en consecuencia es totalmente independiente del tiempo transcurrido desde la ocurrencia del último evento, es decir, de las 10:15 a las 10:30. Este resultado se conoce como falta de memoria o amnesia de la Distribución Exponencial.
Consideremos el siguiente ejemplo que permite ilustrar esta situación: Una máquina en operación tiene una unidad de reserva para sustituirla de inmediato cuando falla. El tiempo medio entre fallas (conocido también como MTBF o Mean Time Between Failures) se distribuye exponencial y sucede cada 50 minutos (en promedio). El operario de la máquina comenta que ésta suele descomponerse cada tarde a eso de las 17:00. Se requiere analizar la validez de lo que señala el operario.
El tasa promedio de fallas de la máquina es
Se concluye que lo que señala el operario no es correcto dado que contradice a que el tiempo entre fallas se distribuye exponencial y que por consiguiente es totalmente aleatorio. Dicho de otro modo la probabilidad de que la máquina falle a las 17:00 dependerá de la hora del día (en relación a las 17:00) con la que se calcule. Por ejemplo, si ahora son las 16:30, la probabilidad de que lo que afirma el operador sea cierto es:
El resultado anterior se puede corroborar haciendo uso de la herramienta de cálculos de probabilidad del software Geogebra:
A continuación presentamos un breve tutorial de nuestro canal de Youtube con la implementación en Geogebra del ejemplo anterior: