En general la Gestión de Inventarios de productos perecibles enfrenta desafíos mayores en comparación a la determinación de tamaños de lotes de aquellos productos de ciclo de vida largo donde los productos se desvalorizan de forma más lenta y adicionalmente existe más de una oportunidad de venta. En este contexto el análisis marginal es una alternativa metodológica para enfrentar los problemas de determinación de tamaño de lote de producción o compra, bajo un contexto de incertidumbre (demanda incierta) donde existe una oportunidad única de orden o producción.
Si un producto es perecible (notar que bajo esta clasificación no sólo debemos considerar productos alimenticios) y la demanda excede la cantidad ordenada, entonces se pierde venta (lo que genera costos de quiebres de stock, los cuales son complejos de estimar según lo analizado en la clasificación de los costos de inventario). Por el contrario, si la demanda es menor que la cantidad ordenada entonces sobra inventario el cual puede o no tener un uso alternativo, no obstante por lo general el valor monetario que se logra rescatar de su uso alternativo no logra cubrir la totalidad del costo de compra o fabricación.
El análisis marginal enfrentar el problema de determinación de tamaño de lote de compra o producción de aquellos productos perecibles. Se enfoca en analizar lo que ocurre con el artículo a vender que tiene peor margen, y asegurar que este margen sea positivo. Si se venden “k” items, nos preocupa analizar el margen esperado (en probabilidad) del k-ésimo artículo en venderse. Si D representa la demanda (variable aleatoria) de un producto perecible, ¿cuál es la probabilidad de vender la k-ésima unidad del inventario?:
La probabilidad de que la demanda total sea por lo menos k unidades!. Luego, la probabilidad de NO vender la k-ésima unidad es:
El margen esperado de la k-ésima unidad queda descrito por:
Notar que la ganancia esperada es decreciente en la medida que aumenta el tamaño de pedido.
En consecuencia, queremos encontrar el mayor valor de k tal que esta cantidad sea no negativa. Esto equivale a encontrar el mayor k tal que:
Ejemplo Análisis Marginal en la Gestión de Inventarios
Un retailer especialista en artículos de moda debe decidir cuántas cajas de vestidos de la línea “Sass” pedir para la próxima temporada. Esta línea de vestidos es sumamente exclusiva y elaborada manualmente en Italia. Ya que se trata de un producto nuevo y altamente costoso, el Product Manager encargado de la compra pide ayuda a cinco expertos de la empresa. Juntos ellos pronostican que la demanda seguirá una distribución normal con media 10 cajas y desviación estándar igual a 2 cajas.
La ganancia por cada vestido vendido es de 24% del costo. Si no se vende un vestido, este debe ser liquidado, en cuál caso sólo se recupera el 64% del costo. Utilice el pronóstico de los expertos para modelar la demanda con una distribución normal, y determine la cantidad de cajas que debiera pedir el retailer a fin de maximizar sus ganancias. Indique el nivel de servicio instock que se ofrecerá a los clientes producto de esta estrategia. En su análisis suponga que es posible comprar (y vender) fracciones de cajas.
El nivel de servicio instock es de un 40%. El tamaño óptimo de pedido (aproximado luego de ajustar el valor de Z(40%)) según el análisis marginal es:
Notar que el tamaño óptimo de pedido calculado anteriormente se puede corroborar haciendo uso del software Geogebra, donde luego de seleccionar la función de probabilidad teórica que representa el comportamiento de la demanda, se ingresan sus parámetros y el nivel de servicio (instock) objetivo.
Otra alternativa es obtener Z(40%) haciendo uso de Excel. Para ello utilizamos la fórmula =DISTR.NORM.ESTAND.INV(0,4) según se muestra en la siguiente imagen:
Siempre ayuda esta página, muy buena, y bien explicado, aunque obviamente siempre faltan cosas, se agradece muchisimo!, soy estudiante y me salvan la vida,