En el modelo de Tamaño Económico de Pedido o EOQ (de sus denominación del inglés Economic Order Quantity) y considerando sus supuestos simplificadores (entre otros demanda constante y conocida y tiempo de reposición o Lead Time constante y conocido) los costos significativos son los costos de mantener el inventario y los costos de hacer el pedido.
Sea D la demanda anual (o la demanda durante el horizonte de evaluación que corresponda), S el costo de emisión de pedidos que se asume que es fijo independiente del tamaño del pedido y H el costo unitario de almacenamiento (anual o según corresponda), la función de costos totales se expresa de la siguiente forma:
Se puede observar que desde el punto de vista de los costos de almacenamiento existe un incentivo a pedidos de menor tamaño para satisfacer la demanda. No obstante los costos de emisión de pedidos son crecientes cuando los pedidos son de menor tamaño dado que se requerirá de un mayor número de pedidos para satisfacer la demanda. Este efecto contrapuesto de los costos de almacenamiento y emisión de pedidos para distintos tamaños de pedido se observa en la siguiente gráfica:
En relación a lo anterior la solución del modelo EOQ busca encontrar el tamaño óptimo de pedido que permite minimizar la función de costos totales (que es la suma de los costos de almacenamiento y costos de emisión). Para encontrar dicho Q óptimo derivamos la función de costos totales en términos del tamaño de pedido e igualamos a cero, para luego encontrar la solución EOQ. A continuación la deducción de la fórmula del modelo EOQ:
Notar que el término C*D marcado con color rojo en la fórmula anterior representa el costo asociado a la compra de las unidades que permite satisfacer la demanda D. Si se asume que no hay descuentos por cantidad dicho costo de compra no discrimina entre distintas alternativas de tamaño de pedido. Por el contrario bajo el escenario de que existe descuentos por cantidad entonces el costo total de compra se verá afectado para distintos tramos de pedido que generan cambios en los precios unitarios. Recomendamos al lector revisar en este caso el modelo EOQ con Descuentos por Cantidad.
Ejemplo: LubeCar se especializa en cambios rápidos de aceite para motor de automóvil. La empresa compra aceite para motor a granel a un distribuidor a $2,5 por galón. En el servicio se atienden unos 150 autos diarios y cada cambio de aceite requiere de 1,25 galones. LubeCar guarda el aceite a granel con un costo de $0,02 por galón y por día. También, el costo de emitir un pedido de aceite a granel es de $20. Considere que el tiempo de entrega del distribuidor (tiempo de espera) es de 2 días. Asuma que un año típico tiene 250 días.
Determine la cantidad óptima de pedido utilizando EOQ:
D=1,25[galones/auto]*150[autos/día]*250[días/año]=46.875[galones/año]. Por tanto la cantidad óptima a pedir es:
Determine el costo total anual para LubeCar:
El lector podrá observar que el tamaño óptimo de pedido de