La gestión de inventarios hace uso de distintas herramientas metodológicas que abordan 2 preguntas básicas: ¿de qué tamaño debe ser un pedido? y ¿cada cuánto tiempo se debe realizar un pedido?. En el siguiente artículo se propone la utilización de una Cadena de Markov en tiempo discreto para determinar la política de reposición de inventarios de una empresa: Una tienda que mantiene un inventario de un producto dado para satisfacer una demanda (aleatoria). La demanda diaria D, tiene la siguiente distribución de probabilidades:
Consideremos una política de inventarios denominada (q,Q), que indica que si el nivel de inventarios al final de cada día es menor a q=2 se ordenan Q=1 unidades adicionales (las cuales se asumen disponibles al inicio del día siguiente), en caso contrario no se hace ninguna orden. La demanda no satisfecha es venta perdida y hay 2 unidades al final en n=0 (distribución inicial). Sea Xn el nivel de inventario al final del día n (esto corresponde a la definición de la variable aleatoria), interesa modelar el problema mediante una Cadena de Markov.
Un primer desafío consiste en determinar los posibles estados que puede adoptar la variable aleatoria en una etapa n cualquiera. Notar que es posible finalizar un día sin unidades en inventario, dado que si bien esta situación genera una reposición de 1 unidad, ésta se asume disponible al inicio del día siguiente. Adicionalmente también es posible terminar un día con 1 o 2 unidades en inventario (en estos casos no se genera reposición). Sin embargo, no es posible terminar un día con 3 unidades en inventario (recordar que en n=0 se dispone de 2 unidades en inventario y dada la política de reposición, ésta se genera cuando se dispone de menos de 2 unidades en inventario). En resumen, los estados posibles para la variable aleatoria son Xn℮{0,1,2}.
A continuación estimamos las probabilidades de transición en una etapa las cuales se resumen en la siguiente matriz de probabilidades de transición (matriz P):
Por ejemplo, si en un día n en particular se finaliza con 0 unidades en inventarios se genera un pedido que al inicio del día siguiente permitirá disponer de 1 unidad; para que dicho día (n+1) se termine con 0 unidades en inventario se requiere que la demanda sea mayor o igual a 1 unidad (este es el caso de P00).
Adicionalmente se pueden estimar las probabilidades estacionarias, es decir, que en el largo plazo (independiente de la distribución inicial) se disponga al final de un día de 0, 1 o 2 unidades en inventario. Para ello se debe clasificar los estados de la cadena donde en particular se corrobora que ésta es irreducible con estados recurrentes positivos aperiódicos.
En consecuencia la probabilidad de que en el largo plazo se disponga de 0 unidades al final de un día es de un 50% (1/2), tener una unidad es un 37,5% (3/8) y 2 unidades un 12,5% (1/8). Alternativamente podemos hacer uso de las ecuaciones matriciales para que partiendo de la distribución inicial (dato) se estime la probabilidad de encontrarse en cualquiera de los estados al cabo de 1, 2, …, n etapas (con n que tiende a infinito). Dicho resultado corrobora los resultados anteriores:
Se propone al lector comprobar que independiente de la selección de la distribución inicial las probabilidades de largo plazo son las expuestas.