En el contexto de la aplicación del Método Simplex no siempre es inmediata la obtención de una solución básica factible inicial, en las variables originales del modelo. Para conseguir esto existen varios procedimientos como son el Método Simplex de 2 Fases y el Método de la M Grande (o Gran M) el cual abordaremos en este artículo. Para ello consideremos el siguiente modelo de Programación Lineal en 2 variables:
A continuación agregamos las variables no negativas
Donde el parámetro M es una constante positiva suficientemente grande para representar una penalización adecuada en la función objetivo. La tabla inicial del método esta dada por:
Antes de continuar con las iteraciones se debe procurar que el costo reducido de las variables
Ahora debemos seleccionar que variable no básica ingresa a la base. El menor costo reducido corresponde a la variable
Siguiendo con las iteraciones ahora la variable
Una nueva iteración indica que
Se ha alcanzado la solución óptima con
Para una mejor comprensión de los resultados alcanzados a continuación se presenta la resolución gráfica del problema haciendo uso del software Geogebra. El dominio de soluciones factibles corresponde a la recta que une los vértices A y B. Adicionalmente se muestra la curva de nivel que pasa por la solución óptima (vértice B).
Teóricamente se espera que en la aplicación del Método de la M Grande las variables auxiliares sean no básicas en el óptimo. Si el modelo de Programación Lineal es infactible (es decir, si las restricciones no son consistentes), la iteración del Método Simplex final incluirá al menos una variable artificial como básica.
Adicionalmente la aplicación de la técnica de la M Grande implica teóricamente que M tiende a infinito. Sin embargo al usar la computadora M debe ser finito, pero suficientemente grande. En específico M debe ser lo bastante grande como para funcionar como penalización, al mismo tiempo no debe ser tan grande como para perjudicar la exactitud de los cálculos del Método Simplex, al manipular una mezcla de números muy grandes y muy pequeños.