Intervalo de Confianza para un Pronóstico de Demanda

En el siguiente artículo abordaremos cómo calcular un Intervalo de Confianza para un Pronóstico de Demanda, lo cual permite incorporar de forma explícita el impacto que tiene la incertidumbre en la planificación de las actividades comerciales y operacionales de una empresa.

Para ello utilizaremos el Método de Alisado Exponencial o Suavizamiento Exponencial el cual hemos descrito previamente en nuestro sitio. (Ver también: Suavizamiento Exponencial Doble Ejercicios Resueltos).

Consideremos una serie histórica con la demanda de un producto para un periodo de 12 semanas. Se requiere desarrollar un intervalo de confianza del 95% para el Pronóstico de Demanda de la semana 13 utilizando el Método de Suavizamiento Exponencial Simple con α=0,3.

Para ello adoptaremos el supuesto que los errores del pronóstico se distribuyen normalmente lo cual es algo que por supuesto se puede verificar con una dedicación mayor de trabajo y para lo cual se puede utilizar un software de análisis estadístico como Easyfit.

En este contexto la tabla a continuación se muestra el pronóstico comenzando a contar de la semana 4 (esta es una decisión arbitraria dado que podría haber comenzado antes).

Notar que el primer pronóstico corresponde simplemente a la Media Móvil Simple de las primeras 3 semanas.

Luego el pronóstico de la semana 5 se obtiene de la aplicación de la siguiente fórmula: F5=F4+α(A4-F4) que al reemplazar se obtiene F5=1.775+0,3*(1.860-1.775)=1.800,5~1.801 (hemos aproximado éste y los otros pronósticos al entero más cercano según se puede apreciar en la fórmula de Excel utilizada):

intervalo-de-confianza-pron

Ahora necesitamos calcular la desviación estándar del error del pronóstico la cual se obtiene simplemente evaluando en los datos de la tabla anterior según se muestra a continuación:

desviacion-estandar-error-c

Finalmente el intervalo de confianza de un 95% para el pronóstico de la semana 13 se obtiene: (notar que F13=1.766+0,3*(1.780-1.766)=1.770,2~1.770)

intervalo-confianza-95-porc

El resultado anterior es consistente con el proporcionado por la herramienta de Cálculos de Probabilidad de Geogebra donde para una distribución de probabilidad normal (recordar el supuesto de normalidad del error adoptado anteriormente) con media μ=1.770 (F13) y desviación estándar SF=71, el área achurada en color azul representa los valores contenidos en el intervalo de confianza de un 95% (% del área bajo la curva achurada).

intervalo-de-confianza-geog

Pronóstico de Demanda con Alisamiento Exponencial para distintos Alfa (α)

El método de pronóstico de Alisamiento o Suavizamiento Exponencial pertenece a la categoría de Series de Tiempo, es decir, aquellos métodos donde se utiliza información de la demanda histórica para poder pronosticar el futuro. Su nombre se debe a que cada incremento del pasado se reduce en (1 – α) por lo cual se considera válido que la importancia de los datos disminuye en la medida que son más antiguos.

Para poder generar un pronóstico a través del método de Alisamiento Exponencial necesitamos el pronóstico más reciente, la demanda que se presentó para ese período y una constante de suavizamiento α (alfa).

Alisamiento Exponencial

El valor del parámetro alfa es entre 0 y 1. En esta escala para valores de alfa relativamente pequeños se reducen las variaciones de corto plazo asociadas al pronostico lo cual es razonable cuando la demanda real tiene un comportamiento relativamente estable. Sin embargo, si la demanda presenta cambios significativos en el corto plazo nos interesará seguir éstos más de cerca y en ese caso debiéramos seleccionar una constante alfa más grande.

Ejemplo Suavizamiento Exponencial

A continuación presentaremos 3 pronósticos para valores de alfa de α=0,2, α=0,5 y α=0,8. Los resultados se han aproximado (arbitrariamente y por comodidad) al entero más cercano. Notar que en cada caso el primer pronostico es de 200 (igual a la demanda real de Enero). Esta selección es usual dado que para la aplicación del método se necesita un primer pronóstico (o punto de partida) y frecuentemente se selecciona el dato real del período anterior:

Pronóstico Alisamiento Exponencial

En la tabla se puede apreciar que el pronóstico para el mes de Marzo utilizando α=0,2 es de 206. Esto se obtiene como F(Marzo)=200+0,2(230-200)=206. Siguiendo un procedimiento similar se puede calcular el resto de los pronósticos.

¿Cómo decidir que constante de suavizamiento alfa resultó mejor?. Un primer acercamiento es graficar el pronóstico y comparar su comportamiento con la demanda real. El siguiente gráfico representa esta situación. Se puede observar que para α=0,8 se replica de forma más cercana el comportamiento de la demanda aún cuando se aprecia un rezago (situación característica de este método). Por el contrario, para α=0,2 la variación de corto plazo es menor y el pronóstico básicamente marca una leve tendencia creciente. Finalmente para α=0,5 se obtiene un pronóstico intermedio entre los 2 escenarios anteriores.

Gráfico Alisamiento Exponencial

En otro artículo discutimos como mediante el MAD y la Señal de Rastreo podemos simular y seleccionar una constante alfa en base a un criterio cuantitativo. Adicionalmente en la publicación Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple se muestra la aplicación del método de suavizamiento exponencial utilizando el software Crystal Ball.