Análisis ABC de Ventas de Productos mediante un Diagrama de Pareto

Uno de los aspectos claves en la competitividad de una Cadena de Suministro es tomar decisiones acertadas en cuanto a los tamaños de pedidos a realizar a los proveedores, teniendo en consideración un entorno con una demanda incierta o aleatoria (es decir, que no se tiene certeza del valor que adquirirá dicha variable de antemano) y productos con distinto ciclo de vida. En este contexto las metodologías cuantitativas constituyen una contribución en este desafío de determinación de pedidos óptimos, siendo el Análisis ABC de la venta de los productos una de sus principales herramientas.

Análisis ABC de Ventas

Consideremos una empresa que maneja sólo 14 SKU (Stock Keeping Unit) y que ha recolectado la estadística de ventas de cada uno de sus productos en el último año (por ejemplo se vendieron 207 unidades del producto A en el mes de Enero). Los datos se resumen a continuación:

analisis-abc-productos

La Venta Promedio (PROM) del producto A es de 334,8 unidades (se obtiene simplemente de la sumatoria de las ventas de Enero a Diciembre de dicho producto dividido en 12 meses, es decir, (207+293+200+…+412)/12=334,8). La Desviación Estándar (D.EST) de la venta del producto A es de 116,9 unidades y el Coeficiente de Variación (CV) o Índice de Variabilidad se obtiene al dividir la Desviación Estándar por la Venta Promedio. Por cierto los cálculos se facilitan al hacer uso de una planilla Excel, lo cual ahorra esfuerzos en la medida que se trabaja con un número creciente de productos.

A continuación se desarrolla un Análisis ABC de la venta de los productos el cual se basa en la aplicación de la Regla de Pareto. Para ello se ordena en forma descendente los productos según los datos de la columna Venta Promedio (PROM) en color amarillo, luego se calcula cuánto representa dicho promedio respecto a la sumatoria de todos los promedios (que es 2.866,4 unidades), por ejemplo, para la SKU E es 1.666,7/2.866,4=58,14% (aprox). Finalmente la última columna (% ACU.) corresponde al porcentaje acumulado de la venta total de productos para un cierto nivel de SKU acumuladas (por ejemplo, en conjunto los productos E, A y B corresponden al 80,40% de la venta total).

tabla-pareto-abc

El Diagrama de Pareto correspondiente a los datos anteriores se puede obtener fácilmente haciendo uso de Excel según detallamos en el artículo Cómo hacer un Diagrama de Pareto con Excel 2010.

diagrama-pareto-abc-product

La información obtenida a través del análisis ABC de venta de productos es útil toda vez que orienta respecto a aquellos productos con mayor rotación de inventarios, la variabilidad de la demanda y la concentración de la venta en distintos SKU. Todos estos elementos orientan la toma de decisiones y permite priorizar de mejor forma las distintas iniciativas en la Gestión de la Cadena de Suministro (SCM), buscando garantizar el suministro en tiempo y cantidad de aquellos productos que son los más relevantes para la empresa.

Técnicas Cualitativas para Pronósticos de Ventas

Las técnicas de tipo cualitativo para efectuar pronósticos de ventas (demanda) se basa en el juicio de un grupo de personas conocedoras, con experiencia y expertas en la materia, lo que les permite dar su opinión y pronosticar el futuro en relación a un tema determinado; esta opinión puede consistir en la entrega de valores o rango de valores sobre el futuro. Estas técnicas se utilizan cuando no existen datos numéricos que permitan el uso de técnicas cuantitativas o cuando estos datos son poco confiables. Esta situación se presenta generalmente cuando se requiere planificar a largo plazo basándose en algún pronóstico, donde la exactitud necesaria es mediana, a diferencia de la planificación de corto plazo donde la exactitud necesaria es más alta, y de preferencia se usan técnicas cuantitativas.

Sales forecasting-resized-600

A continuación un breve listado de las principales técnicas cualitativas para pronóstico de ventas. Para acceder a información detallada de cada una de ellas selecciona el enlace de interés:

El diseño de procesos como también la planeación de la capacidad de las instalaciones corresponden a decisiones estratégicas (largo plazo) que suelen ser apoyadas en algún nivel a través de la utilización de métodos de pronósticos cualitativos. El nivel administrativo alto es quien participa activamente de dichas decisiones dada su trascendencia y en consecuencia el efecto que tendrán éstas en las operaciones cotidianas de la empresa.

El siguiente cuadro propone una clasificación aproximada de los métodos de pronósticos más idóneos según el ámbito de las decisiones que se deben tomar. Por cierto su interpretación debe ser flexible, por ejemplo, los métodos cualitativos de proyección de demanda pueden ser utilizados también como complemento a métodos de naturaleza cuantitativa en la planificación táctica (mediano plazo).

aplicacion-de-los-pronostic

Finalmente la selección de la técnica de pronóstico a utilizar se ve influida por diversos factores: la precisión deseada del pronóstico, la disponibilidad de personal calificado, el costo del procedimiento, validez y disponibilidad de datos históricos y los períodos futuros a proyectarse. En este contexto se debe procurar que el método seleccionado sea preciso, como también factible de ser sensibilizado.

Método del Ciclo de Vida del Producto para Pronósticos de Ventas

En este caso se trata de pronosticar la evolución en el tiempo que tendrá el ciclo de vida de un determinado producto. Este ciclo se puede dividir normalmente en cinco etapas: desarrollo, introducción, crecimiento, madurez y declinación. Este pronóstico nos permite tener una estimación del tamaño del mercado, y en conjunto con la participación de mercado que tendrá la empresa, estimar la cantidad de producto que será demandada.

Por lo general las utilidades se alcanzan recién en las etapa de crecimiento y madurez. Adicionalmente dependiendo del tipo del producto es crítico que la etapa de desarrollo sea rápida, en particular en aquellos con ciclo de vida corto o que rápidamente alcanzan una obsolescencia como por ejemplo los productos intensivos en tecnología.

Una representación gráfica del ciclo de vida de un producto según lo definido anteriormente se presenta a continuación:

ciclo-de-vida-de-un-product

Este ciclo de vida de un producto es una señal sobre la necesidad que tienen las empresas de ir innovando sus productos y/o ir generando algunos nuevos; de lo contrario corren el riesgo de desaparecer por no tener productos que ofrecer al mercado. Un caso emblemático al respecto son los esfuerzos de la empresa multinacional 3M que ha instaurado la política de que al menos el 25% de las ventas debe provenir de productos desarrollados en los últimos 5 años (en efecto en el año 2012 el 33% de las ventas de la compañía corresponde a productos desarrollados en los últimos 5 años según consta en Committee on Ways an Means Manufacturing Work Group, 1 de Abril de 2013). Los resultados no son casuales y refleja una estrategia predeterminada de la empresa de involucrar activamente a sus trabajadores en la generación de nuevas ideas y prototipos de productos.

3m-desarrollo-productos

El ciclo de vida de un producto también lo podemos también relacionar con la Matriz de Participación de Mercado del BCG (Boston Consulting Group), en que los productos son clasificados como incógnitas, estrellas, vacas lecheras, o perros. Esta clasificación obedece a dos ejes de análisis: participación relativa del mercado y tasa de crecimiento del mercado.

matriz-bcg-2

Así por ejemplo un producto clasificado como vaca lechera se caracteriza por una participación relativa de mercado alta pero desempeñándose en un mercado con una tasa de crecimiento baja.

En resumen el método de ciclo de vida del producto como herramienta cualitativa de apoyo para pronósticos de venta, parte de la hipótesis de la necesidad de tener en consideración la etapa del ciclo de vida en la que se encuentra el producto, como también la clasificación del mismo (por ejemplo haciendo uso de la Matriz BCG u otra metodología). Todo esto con el objeto de poder generar proyecciones más acertadas en un contexto de incertidumbre.