Cómo Calcular Cp y Cpk con el Complemento SPC for Excel

El Cálculo de los índices Cp y Cpk en el Control Estadístico de Procesos permite evaluar que tan bien el proceso se apega a las especificaciones técnicas deseadas o equivalentemente determinar si el proceso cumple el objetivo funcional para el cual fue diseñado. En el siguiente artículo mostraremos cómo obtener de forma rápida y sencilla dichos indicadores haciendo uso del complemento SPC for Excel, el cual puede ser descargado en el enlace anterior por un período de prueba de 20 días. Una vez que el complemento SPC for Excel haya sido correctamente descargado y activado será visible en en una de las pestañas del menú de Excel como se muestra (en un extracto) a continuación:

menu-spc-for-excel

Para ilustrar su utilización consideremos la información relativa a un proceso del cual se tienen 15 muestras, cada una de ellas con 4 observaciones, donde se ha registrado la información de las lecturas en OHMS de cierto dispositivo electrónico. La especificación nominal o deseada del dispositivo es de 1.000 OHMS y se permite una variabilidad de +- 25 OHMS con lo cual se definen los límites de especificación.

datos-para-calculo-de-cp-y-

A continuación seleccionamos la opción Cpk del menú de SPC for Excel (visible en la imagen anterior) y seleccionamos el rango de los datos. Notar que en el ejemplo la información cuantitativa de las muestras esta contenido en el rango que conforma la matriz de la celda C3 a la F17 (es decir, 60 celdas: 15 filas y 4 columnas). Adicionalmente ingresamos el Límite de Especificación Inferior (LEI) o Lower Specification Limit (LSL) de 975 OHMS (1.000 – 25) y Límite de Especificación Superior (LES) o Upper Specification Limit (USL) de 1.025 OHMS (1.000 + 25). Recordar que la especificación nominal es de 1.000 OHMS.

capacidad-del-proceso-spc

Una vez ingresados los datos atingentes al ejemplo y habilitando los resultados de capacidad (en su opción Yes) seleccionamos OK. Esto dará origen a una nueva hoja en nuestro archivo Excel con los resultados del análisis de capacidad tal como se muestra a continuación:

cp-y-cpk-spc-para-excel

Observar que los resultados son consistentes con los alcanzados preliminarmente en el artículo al cual hacemos referencia al inicio de este tutorial. Adicionalmente se obtienen una serie de estadísticas complementarias que permite tener una visión más general del comportamiento del proceso.

calculo-cp-y-cpk-control-es

Cómo calcular la Probabilidad de producir un Producto Defectuoso (Control Estadístico de Procesos)

El siguiente artículo aborda a través de un sencillo ejemplo la estimación de la probabilidad de producir un producto defectuoso en el contexto del Control Estadístico de Procesos (CEP). Consideremos una empresa de manufactura que desea determinar si una máquina que tiene es capaz de fresar la pieza de un motor que tiene una especificación clave de  4 ± 0.003 pulgadas. Después de probar esta máquina, la empresa determinó que tiene una media muestral de 4.001 pulgadas con una desviación estándar de 0.002 pulgadas. Asumiendo que el proceso en cuestión se encuentra bajo control estadístico, calcule Cpk para esta máquina:

ejemplo-calculo-cpk

¿Cuál es la probabilidad de producir un defecto?. Un producto defectuoso será aquel que se encuentre en una dimensión bajo el LEI (3,997) o sobre el LES (4,003).

calculo-zlei-y-zles

Probabilidad de Defectuoso = P(X<LEI) + P(X>LES) = (1 – 0,9773) + (1 – 0,8413) = 18,14%.

Una forma alternativa de abordar el procedimiento anterior es haciendo uso de la interfaz de cálculos de probabilidad disponible en el software Geogebra. En la siguiente imagen el área achurada en color azul representa la probabilidad de que un producto no sea defectuoso (81,86%), por tanto por diferencia se obtiene la probabilidad de defectuoso (100% – 81,86% = 18,14%) que corrobora el resultado obtenido anteriormente.

probabilidad-defectuoso-geo

¿Recomendaría a la empresa utilizar esta máquina para producir esta pieza?. No. Cpk indica que el promedio muestral está descentrado, en particular, más cerca del LES. Si bien es difícil encontrar un proceso perfectamente centrado en el valor nominal de la especificación, en este caso esta situación no se compensa con una baja variabilidad del proceso (se propone al lector corroborar que Cp=0,5 lo cual confirma el análisis anterior). Adicionalmente la probabilidad de producir un defecto (18,14%) es inadmisible es un contexto competitivo.

Cálculo de Índice de Habilidad Cp e Índice de Capacidad Cpk en el Control Estadístico de Procesos

Al planear los aspectos de calidad de la manufactura, nada es más importante que asegurarse de antemano de que el proceso productivo será capaz de mantener las tolerancias. La habilidad del proceso proporciona una predicción cuantitativa de qué tan adecuado es un proceso. La habilidad del proceso es la variación medida, inherente del producto que se obtiene en ese proceso. En este contexto, la habilidad permite entre otras cosas establecer limites de especificación realistas.

La fórmula para el cálculo de la habilidad del proceso que más se usa es: Habilidad del Proceso = +- 3σ (un total de 6σ) donde σ es la desviación estándar del proceso cuando se encuentra bajo control estadístico. Adicionalmente si el proceso esta centrado en la especificación nominal y sigue una distribución de probabilidad normal, 99,73% de la producción estará a menos de de la especificación nominal.

En este contexto la tasa de habilidad de un proceso Cp se refiere a la variación en un proceso alrededor del valor promedio, obteniéndose a través de la siguiente fórmula (notar que se usa 6S como estimación de ):

formula-cp

Un proceso que cumple bien con los límites de especificación (rango de especificación = +- 3σ) tiene un Cp=1. Lo crítico de muchas aplicaciones y la realidad de que el promedio del proceso no permanecerá en el punto medio del rango de especificación sugiere que Cp debe ser al menos 1,33.

En este contexto es útil tener un índice de habilidad que refleje ambas variaciones y la localización del promedio del proceso. Tal índice es Cpk o índice de capacidad del proceso, el cual refleja la proximidad de la media actual del proceso al Límite de Especificación Superior (LES) o al Límite de Especificación Inferior (LEI).

formula-cpk

Si el promedio actual es igual al punto medio del rango de especificación, entonces Cpk=Cp.

Adicionalmente si un proceso se encuentra en control estadístico, la siguiente relación se cumple para usar S como una estimación de σ (desviación estándar):

formula-s-control-estadisti

A continuación se presenta el calculo de los índices Cp y Cpk aplicado a los datos del ejemplo de las Gráficas de Promedios y Rangos en el Control Estadístico de Procesos. El resumen de los datos se observa en la siguiente tabla:

calculo-promedio-y-rango

Luego se procede a la estimación de S (recordar que cada muestra tiene 4 observaciones, en consecuencia n=4 y d2=2,059).
calculo-s-control-estadisti

Notar que el parámetro d2=2,059 se puede obtener de la siguiente tabla:

constantes para gráficas de control

El cálculo de Cp y Cpk esta dado por:

calculo-cp-y-cpk-control-es

La media del proceso (999,6 OHMS) se encuentra prácticamente centrada respecto a la especificación nominal (1.000 OHMS). Esto se corrobora en la similitud de los indicadores Cp y Cpk. No obstante lo anterior  la habilidad del proceso es relativamente baja (se recomienda al menos Cp≥1,33) lo que permite anticipar que un porcentaje significativo de resistores podrían estar fuera de los límites de especificación.

Existen un importante número de herramientas que permiten el cálculo sencillo de estos indicadores de desempeño. Al respecto recomendamos a nuestros usuarios leer el artículo Cómo Calcular Cp y Cpk con el Complemento SPC for Excel que muestra cómo utilizar el complemento SPC de Excel para simplificar este tipo de operaciones.