Suavizamiento Exponencial Simple (Ejercicios Resueltos)

El método de Suavizamiento Exponencial Simple (conocido también como Alisamiento Exponencial o Suavización Exponencial Simple) corresponde a una de las metodologías más populares para realizar Pronósticos de Demanda al disponer de una serie de tiempo. En este contexto en el artículo Pronóstico de Demanda con Alisamiento Exponencial para distintos valores de Alfa se detalla la aplicación de este método simulando su comportamiento y ajuste a los datos de la demanda real para distintos valores del parámetro de suavización alfa (α). A continuación presentaremos un compendio de ejercicios resueltos de Suavizamiento Exponencial Simple y un resumen de los principales conceptos tras este método.

El pronóstico del período t (F_{t}) será igual al pronóstico del período anterior, es decir, del período t-1 (F_{t-1}) más alfa (α) por el error del período anterior (A_{t-1}-F_{t-1}), según se muestra en la fórmula a continuación:

Alisamiento Exponencial

Ejercicios Resueltos de Suavizamiento Exponencial Simple

Ejercicio N°1: Una empresa de consumo masivo lleva registro de la demanda mensual de uno de sus productos emblemáticos para un período de un año. Dicha información se presenta en la columna etiquetada Demanda en la imagen a continuación. Se requiere utilizar el método de suavizamiento exponencial simple considerando tres valores para el parámetro de suavizamiento alfa: 0,1; 0,5 y 0,9. Obtener el pronóstico del período 13 (mes de Enero del año siguiente) y evaluar el ajuste del método para cada uno de los valores de alfa propuestos.

suavizacion-exponencial-par

Recordar que el suavizado exponencial simple requiere de un primer pronóstico para su aplicación. En este caso hemos decidido generar un pronóstico a contar del segundo período (mes de Febrero) y asumir que dicho valor corresponde a la demanda real del mes anterior (mes de Enero o período 1). Este criterio por cierto es arbitrario y se podría seleccionar otro punto de partida, por ejemplo, un promedio para la demanda real de los 12 meses.

Adicionalmente en las columnas E, F y G de la imagen anterior se observa los pronósticos para alfa 0,1, 0,5 y 0,9, respectivamente. En particular se puede corroborar la fórmula utilizada para obtener el pronóstico del mes de Febrero utilizando α=0,1 (celda E5), donde los resultados han sido aproximados al entero más cercano.

Ejercicio N°2: Considerando la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado una menor Desviación Absoluta Media (MAD)?.

Para obtener el MAD (Mean Absolute Deviation) o Desviación Absoluta Media, aplicamos el procedimiento descrito en el artículo Calculo del MAD y la Señal de Rastreo para un Pronóstico de Demanda. En la planilla interactiva a continuación puedes simular tanto los pronósticos como el comportamiento del MAD para distintos valores de alfa. Para ello basta con editar las celdas en color amarillo.

En caso de obtener un error del tipo #VALUE! ingrese los valores de α utilizando . (punto) como separador de decimal, por ejemplo, α=0.1.

Conclusión: El alfa que provee el menor MAD al período 12 entre las 3 alternativas evaluadas (0,1, 0,5 y 0,9) es α=0,1 (MAD de 449,7). En efecto se puede corroborar utilizando el módulo Predictor de Crystal Ball (según se describe en Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple) que α=0,001 es el valor de alfa que minimiza el MAD en este ejemplo.

crystal-ball-suavizado-expo

Ejercicio N°3: Asuma nuevamente la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado un menor Error Porcentual Absoluto Medio (MAPE)?.

A continuación se presentan los resultados del cálculo del MAPE donde en particular se puede observar que la fórmula de cálculo es simplemente el promedio de los errores absolutos en términos porcentuales. Luego se concluye que al igual que en el Ejercicio N°2 el parámetro alfa que tiene mejor desempeño en relación al MAPE es α=0,1.

calculo-mape-suavizado-expo

Observación: En la pantalla de los resultados obtenidos con Predictor de Crystal Ball se observa que para α=0,001 el valor del MAPE es 22,43%. Te recomendamos verificar el resultado anterior haciendo uso del procedimiento anteriormente descrito.

Ejercicio N°4: Calcule y grafique la Señal de Rastreo (Tracking Signal o TS) para los métodos aplicados en el Ejercicio N°1.

señal-de-rastreo-suavizamie

Se observa que la Señal de Rastreo se encuentra en los límites comúnmente aceptados [-4,4] MAD. Adicionalmente no se observa una tendencia evidente en su comportamiento por lo cual no se evidencia la presencia de error sistemático. Criterios y antecedentes similares sobre la interpretación conceptual de este indicador de desempeño se aborda en el artículo Interpretación de la Señal de Rastreo de un Pronóstico de Demanda.

Conclusión: En general el método de Suavizamiento de Exponencial Simple tiene un mejor desempeño cuando la serie de tiempo no presenta tendencia ni estacionalidad marcada. En el caso de evidenciar alguno de estos componentes en la serie de tiempo (o ambos de forma simultanea) se recomienda explorar otros métodos de pronóstico como el Método de Suavizamiento Exponencial Ajustado a la Tendencia (Suavización Exponencial Doble) o el Método de Descomposición (entre otros).

patrones-series-de-tiempo

Cálculo de la Raíz del Error Cuadrático Medio o RMSE (Root Mean Squared Error)

La Raíz del Error Cuadrático Medio o RMSE (Root Mean Squared Error) es una medida de desempeño cuantitativa utilizada comúnmente para evaluar métodos de pronóstico de demanda. En este contexto RMSE consiste en la raíz cuadrada de la sumatoria de los errores cuadráticos. En comparación con la Desviación Media Absoluta o MAD, RMSE amplifica y penaliza con mayor fuerza aquellos errores de mayor magnitud. La fórmula de cálculo del RMSE se muestra a continuación:

\textrm{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (A_t - F_t)^2}

En el artículo Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple, describimos en detalle cómo utilizar el software Crystal Ball para desarrollar pronósticos de demanda basados en una serie de tiempo. Los datos utilizados fueron los siguientes:

serie-de-tiempo-predictor

Al utilizar el método de pronostico de Suavizamiento Exponencial con α=0,8439, se puede obtener fácilmente la Raíz del Error Cuadrático Medio (RMSE) con la ayuda de Excel tal como se muestra a continuación:

calculo-rmse-excel

En detalle el cálculo del RMSE consiste en:

\textrm{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (A_t - F_t)^2}= \sqrt{\frac{1}{11} \sum_{i=1}^{11} (e_t)^2}= \sqrt{\frac{1}{11}*31.847,07}\cong 53,81

Lo cual corrobora los resultados alcanzados en su momento con Crystal Ball:

resultados-predictor-cb

Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple

El software Oracle Crystal Ball (conocida comúnmente como Crystal Ball) es una aplicación compatible con hojas de cálculo para la elaboración de modelos predictivos, simulación y optimización. Una de sus características principales es que incorpora un módulo para el análisis de datos y proyecciones denominado Predictor sobre el cual presentaremos en este artículo algunos antecedentes básicos respecto a su funcionamiento.

Una vez instalado Crystal Ball se habilitará una nueva pestaña en el menú de navegación en la interfaz de Excel con nombre Crystall Ball donde se muestran las distintas herramientas que incorpora dicho programa. La siguiente imagen muestra un extracto de la visualización anterior con foco especial en el módulo Predictor en Crystal Ball según lo descrito anteriormente:

menu-crystal-ball-excel

A continuación para ilustrar respecto a la utilización del módulo Predictor para los métodos de Promedio Móvil Simple y Suavizado Exponencial Simple consideraremos los siguientes datos de demanda real de un producto tipo que utilizamos anteriormente en el artículo Error Porcentual Absoluto Medio (MAPE) en un Pronóstico de Demanda.

serie-de-tiempo-predictor

Luego seleccionamos el módulo Predictor.

predictor-crystal-ball

Crystal Ball reconoce automáticamente los datos de la serie de tiempo al menos que existan más de una serie en la hoja de cálculo, caso en el cual siempre estará disponible la opción de seleccionar los datos de origen. En nuestro ejemplo el rango de datos se encuentra entre la celda B2 y C14 de la planilla de cálculo. Las opciones y ajustes en este nivel están disponibles en el menu Datos de entrada.

seleccion-datos-predictor

A continuación seleccionamos Siguiente para pasar a las opciones de Atributos de datos. Por ejemplo se puede especificar que los datos están en meses (o según sea el caso), además de incluir información respecto a eventos relevantes en la serie de tiempo y el ajuste de valores atípicos u outliers. Para seguir avanzando se selecciona Siguiente.

atributo-de-datos-predictor

En el menú Métodos muestra los distintos métodos disponibles para su ejecución asociados a los datos de entrada. En este artículo arbitrariamente hemos decidido acotar el análisis a 2 métodos de series de tiempo ampliamente utilizados: Promedio Móvil Simple y Suavizado Exponencial Simple (conocido este último también como suavizamiento o alisamiento exponencial).

metodos-predictor

En el caso del método de medias móviles se ha considerado un promedio de 3 períodos o n=3 (sólo para fines ilustrativos, por cierto se puede seleccionar otro valor para n). Para ello se hace doble clic en el icono Promedio Móvil Simple:

promedio-movil-simple-predi

Para implementar la opción de n=3 se activa la casilla Parámetros de bloqueo y se ingresa Orden 3 y Aceptar.

parametros-de-bloqueo-3

Finalmente al seleccionar Siguiente se accede al menú de Opciones se puede seleccionar la medida de error que se desea utilizar para efectos de comparación de los métodos seleccionados en el paso anterior. En este caso hemos seleccionado el MAD o Desviación Absoluta Media no obstante también se puede seleccionar el Error Cuadrático Medio (RMSE) o Error de Porcentaje Medio Absoluto (MAPE).

opciones-predictor

Para terminar se debe Ejecutar (obtendremos una advertencia respecto a que existen muy pocos datos en la serie para generar proyecciones fiables. Si bien este comentario es válido, omitiremos su advertencia debido a que en esta instancia nos interesa mostrar cómo se utiliza la herramienta Predictor de Crystal Ball más que discutir lo adecuado que resulta realizar pronósticos con una baja densidad de datos).

resultados-predictor-cb

De los 2 métodos utilizados se obtiene que según el criterio del MAD (MAD=46,10) el que tiene mejor desempeño es Suavizado Exponencial Simple con alfa α=0,8439. El detalle de los pronósticos se puede consultar en el menú Ver y Tabla según se muestra a continuación:

ver-tabla-predictor
suavizamiento-crystal-ball

Observación: Si bien el cálculo del MAD no es explícito (sólo aparece el resultado de 46,10), se puede obtener fácilmente siguiendo el procedimiento que se muestra a continuación y que hemos abordado en el Blog anteriormente (cualquier diferencia menor se debe exclusivamente a los criterios de aproximación).

calculo-mad-crystal-ball

Pronóstico de Demanda con Alisamiento Exponencial para distintos Alfa (α)

El método de pronóstico de Alisamiento o Suavizamiento Exponencial pertenece a la categoría de Series de Tiempo, es decir, aquellos métodos donde se utiliza información de la demanda histórica para poder pronosticar el futuro. Su nombre se debe a que cada incremento del pasado se reduce en (1 – α) por lo cual se considera válido que la importancia de los datos disminuye en la medida que son más antiguos.

Para poder generar un pronóstico a través del método de Alisamiento Exponencial necesitamos el pronóstico más reciente, la demanda que se presentó para ese período y una constante de suavizamiento α (alfa).

Alisamiento Exponencial

El valor del parámetro alfa es entre 0 y 1. En esta escala para valores de alfa relativamente pequeños se reducen las variaciones de corto plazo asociadas al pronostico lo cual es razonable cuando la demanda real tiene un comportamiento relativamente estable. Sin embargo, si la demanda presenta cambios significativos en el corto plazo nos interesará seguir éstos más de cerca y en ese caso debiéramos seleccionar una constante alfa más grande.

Ejemplo Suavizamiento Exponencial

A continuación presentaremos 3 pronósticos para valores de alfa de α=0,2, α=0,5 y α=0,8. Los resultados se han aproximado (arbitrariamente y por comodidad) al entero más cercano. Notar que en cada caso el primer pronostico es de 200 (igual a la demanda real de Enero). Esta selección es usual dado que para la aplicación del método se necesita un primer pronóstico (o punto de partida) y frecuentemente se selecciona el dato real del período anterior:

Pronóstico Alisamiento Exponencial

En la tabla se puede apreciar que el pronóstico para el mes de Marzo utilizando α=0,2 es de 206. Esto se obtiene como F(Marzo)=200+0,2(230-200)=206. Siguiendo un procedimiento similar se puede calcular el resto de los pronósticos.

¿Cómo decidir que constante de suavizamiento alfa resultó mejor?. Un primer acercamiento es graficar el pronóstico y comparar su comportamiento con la demanda real. El siguiente gráfico representa esta situación. Se puede observar que para α=0,8 se replica de forma más cercana el comportamiento de la demanda aún cuando se aprecia un rezago (situación característica de este método). Por el contrario, para α=0,2 la variación de corto plazo es menor y el pronóstico básicamente marca una leve tendencia creciente. Finalmente para α=0,5 se obtiene un pronóstico intermedio entre los 2 escenarios anteriores.

Gráfico Alisamiento Exponencial

En otro artículo discutimos como mediante el MAD y la Señal de Rastreo podemos simular y seleccionar una constante alfa en base a un criterio cuantitativo. Adicionalmente en la publicación Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple se muestra la aplicación del método de suavizamiento exponencial utilizando el software Crystal Ball.