Ejemplo Pronóstico de Demanda con Media Móvil Ponderada

En el contexto de los métodos de series de tiempo aplicados para los Pronósticos de Demanda, el método de Media Móvil Ponderada es una variantes de la técnica de Media Móvil Simple donde existe la posibilidad de modificar las ponderaciones que tiene cada uno de los datos en el cálculo del promedio. Este método resulta ser útil cuando es válida la premisa de que el pasado más reciente tiene un mayor poder predictivo respecto al futuro (por lo cual se suele asociar una mayor ponderación en el cálculo del promedio), sin embargo, en caso de existir estacionalidad en el patrón histórico de la demanda puede ser necesario ponderar con mayor fuerza un dato más antiguo de la serie de tiempo.

La fórmula de cálculo para una Media Móvil Ponderada se presenta a continuación:

formula-media-movil-pondera

En la nomenclatura anterior Ft representa el pronóstico para el período t, At es la demanda real (observada) para el período t y Wt representa las ponderaciones seleccionadas para el promedio ponderado. Por supuesto la sumatoria de dichas ponderaciones debe ser igual a 1 (o un 100%).

Ejemplo Media Móvil Ponderada

Para ilustrar la aplicación del método utilizaremos la serie histórica que presentamos en el artículo sobre cómo utilizar una regresión lineal para realizar un pronóstico de demanda. En esta oportunidad aplicaremos el método de media móvil simple con n=3 (como medio de contraste) y una media móvil ponderada de 3 períodos igualmente pero con ponderaciones seleccionadas arbitrariamente de 60%, 30% y 10%, respectivamente.

planilla-media-movil-ponder

En la columna «MP» se incluyen los resultados del promedio móvil ponderado redondeando los resultados al entero más cercano. Notar que para una mayor comodidad se pueden fijar las ponderaciones a celdas específicas, lo que facilita copiar la fórmula a los períodos siguientes. A continuación y para facilitar la interpretación de los resultados se presenta un gráfico que contrasta los datos de la serie histórica y los dos dispositivos de pronóstico utilizados.

grafico-media-movil-pondera

Se puede apreciar que en la medida que las ponderaciones seleccionadas para cada período se aproximen a 1/3, el pronóstico obtenido a través de la media móvil ponderada se asemejará al comportamiento de los resultados del promedio móvil simple con n=3. En este contexto es importante destacar que no existe procedimiento exacto que permita seleccionar de forma inequívoca las ponderaciones Wt de un promedio móvil ponderado y en consecuencia la «prueba y error» suelen ser estrategias utilizadas para evaluar el ajuste del pronóstico a los datos reales.

Finalmente sí el objetivo es proponer alguno de los métodos de pronósticos utilizados en este artículo se recomienda complementar el análisis calculando el MAD y Señal de Rastreo (TS) en cada caso, de modo de disponer de mayores elementos de juicio antes de tomar una decisión.

¿Quieres tener el archivo Excel con la resolución de este problema?. Recomiéndanos en Facebook o Google+ utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo.

[sociallocker]Media Móvil Ponderada[/sociallocker]

Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda

El Método de Mínimos Cuadrados o Regresión Lineal se utiliza tanto para pronósticos de series de tiempo como para pronósticos de relaciones causales. En particular cuando la variable dependiente cambia como resultado del tiempo se trata de un análisis de serie temporal.

En el siguiente artículo desarrollaremos un Pronóstico de Demanda haciendo uso de la información histórica de venta de un producto determinado durante los últimos 12 trimestres (3 años) cuyos datos se observan en la siguiente tabla resumen:

tabla-datos-regresion-linea

La ecuación de mínimos cuadrados para la regresión lineal es la que se muestra a continuación donde β0β1 son los parámetros de intercepto y pendiente, respectivamente:

ecuacion-regresion-lineal

Estimar los valores de dichos parámetros es sencillo haciendo uso de una planilla Excel tal como muestra la tabla a continuación:

calculo-regresion-lineal-co

Luego evaluamos en las ecuaciones presentadas anteriormente para obtener los valores de β0 y β1:

resultados-parametros-regre

Una vez obtenido los parámetros de la regresión lineal se puede desarrollar un pronóstico de demanda (columna color naranja) evaluando en la ecuación de la regresión para los distintos valores de la variable independiente (x).

Por ejemplo, para el primer trimestre el pronóstico es: Y(1)=441,71+359,61*1=801,3.

Observación: los valores de los pronósticos han sido redondeados arbitrariamente a un decimal para mayor comodidad.

regresion-lineal-tabulada-e

Notar que con la información que hemos obtenido podemos calcular el MAD y la Señal de Rastreo y utilizar estos indicadores para validar la conveniencia de utilizar este procedimiento como dispositivo de pronóstico.

Adicionalmente puede resultar de interés consultar el artículo Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab que muestra cómo abordar el caso de realizar una regresión lineal con más de una variable independiente (explicativa).

Siguiendo con nuestro análisis a continuación podemos desarrollar un pronóstico de demanda para los próximos 4 trimestres (un año) que corresponden a los trimestres 13, 14, 15 y 16:

  • Y(13)=441,71+359,61*13=5.116,64
  • Y(14)=441,71+359,61*14=5.476,25
  • Y(15)=441,71+359,61*15=5.835,86
  • Y(16)=441,71+359,61*16=6.195,47

Si bien el procedimiento anterior es válido puede ser resumido haciendo uso de las herramientas de análisis de datos de Excel o simplemente realizando un ajuste de una regresión lineal en un gráfico de dispersión de la misma forma que abordamos en el articulo sobre el Método de Descomposición. Para ello luego de realizar el gráfico nos posicionamos en una de las observaciones y luego botón derecho del mouse para seleccionar «Agregar línea de tendencia…».

regresion-lineal-grafico-di

Luego en la interfaz de Excel activamos las opciones «Presentar ecuación en el gráfico» y «Presentar el valor R cuadrado en el gráfico» (este último indicador según se aborda en los cursos de estadística consiste en una medida de la bondad de ajuste de la regresión).

Notar que los valores obtenidos para los parámetros de la regresión son similares salvo menores diferencias por efecto de aproximación.

regresion-lineal-ajustada-e

Otra opción disponible para ajustar una Regresión Lineal haciendo uso de Excel es a través del Complemento llamado Herramientas para análisis.

Su activación es simple: en el menú Archivo (esquina superior izquierda en Excel) ir a Opciones, luego Complementos, a continuación a la derecha de donde dice Complementos de Excel presionar Ir… y luego activar la Herramientas para análisis.

herramienta para análisis excel

Una vez activada las Herramientas para análisis, se puede encontrar ésta abajo del complemento Solver en el menú de Datos.

análisis de datos excel

Luego de las opciones disponibles que nos ofrece este complemento seleccionamos Regresión.

regresión análisis de datos

A continuación seleccionamos el Rango Y de entrada las celdas correspondientes a la variable dependiente (Ventas) y en Rango X de entrada las celdas correspondientes a la variable independiente (Trimestre).

Debemos activar adicionalmente la casilla Residuos si deseamos obtener un pronóstico para las ventas del Trimestre 1 al Trimestre 12 (junto al cálculo del error o residuo de la estimación).

interfaz regresión análisis de datos

Finalmente presionamos Aceptar lo que generará una nueva hoja en nuestra planilla de cálculo.

Un extracto de los resultados es el que se presenta a continuación, donde en color celeste se destaca los coeficientes asociados a los parámetros de la regresión lineal β0 y β1, respectivamente, y en color naranjo el pronóstico obtenido para cada uno de los doce trimestres al utilizar la ecuación de la regresión.

Por ejemplo: Y(1)=441,67+359,61*1=801,28. El residuo o error correspondiente para dicho período (Trimestre 1) es: e_{1}=A_{t}-F_{t}=600-801,28=-201,28.

resultados análisis regresión

¿Quieres tener el archivo Excel con el ajuste de la Regresión Lineal de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]

Cómo calcular el Instock y Fill Rate asociado a un Inventario

En la Gestión de Inventarios resulta como regla general tomar decisiones en un contexto de incertidumbre en el cual no se conoce por anticipado el valor o realización de la variable aleatoria que representa la demanda de un producto.

En este aspecto es importante detenerse un momento dado que según nuestra experiencia docente suele ser una fuente de confusión de los alumnos. Se puede asumir que en base a información histórica se puede construir una demanda empírica que represente razonablemente el comportamiento de la demanda de un producto o incluso buscar su representación a través de una función de probabilidad conocida o demanda teórica (por ejemplo distribución normal, distribución uniforme, distribución gamma y otras utilizadas frecuentemente para fines académicos) para la cual se deberá estimar los mejores valores de los parámetros respectivos (por ejemplo en el caso de seleccionar una distribución normal se deberá estimar los valores de la media µ y la desviación estándar σ).

Para este propósito se puede hacer uso de software estadístico como Easyfit. No obstante, independiente si trabajamos con una distribución empírica o distribución teórica que modele el comportamiento de la demanda, conocer con anticipación el valor que tomará ésta no es posible dado que esto corresponde a la realización de una variable aleatoria.

En el contexto anterior resulta necesario disponer de indicadores de gestión que permitan evaluar el desempeño de una política de mantenimiento de inventario que ayude a los tomadores de decisiones a tomar acciones correctivas de ser necesario.

Para ello presentaremos 2 indicadores frecuentemente utilizados en la actualidad, en particular en la industria de la venta al detalle o comercio minorista, conocida comúnmente como Retail.

Instock: Considerando una demanda aleatoria, y dado una cantidad de inventario Q decimos que su probabilidad de Instock es P[D<=Q].

Fill Rate: Es un indicador de servicio que representa el porcentaje de la demanda que se logra satisfacer. En fórmula:

formula-fill-rate-esperado

Ejemplo Instock y Fill Rate

La panadería Bredi es conocida por producir el mejor pan fresco de la ciudad, por eso tiene ventas sustancialmente altas. Los siguientes datos fueron recolectados durante el último año y para cada valor de k en la segunda columna se indican que porcentaje de días del año pasado la demanda fue exactamente k (baguettes):

tabla-distribucion-empirica

En base a la demanda esperada, el gerente de la panadería Bredi decide hornear 475 baguettes cada mañana (Q=475). ¿Cuál es el Instock y Fill Rate asociado a este tamaño de lote de producción?. (Es importante verificar que la suma de las probabilidades (días en que la demanda fue exactamente k unidades de producto) es un 100%).

Instock: P[D<=475]=25%+15%+10%+10%=60%, es decir, la probabilidad de que en un día cualquiera se puede satisfacer la demanda de forma íntegra es un 60%. Por ejemplo, si la demanda de un día es de 500 baguettes dado un tamaño de producción de 475 unidades se incurre en un quiebre de stock.

Fill Rate: Las ventas esperadas depende del tamaño de lote de producción (Q). Por ejemplo, si la realización de la variable aleatoria (demanda) resulta ser igual o superior a 475 baguettes, se venderán sólo lo que se produce (Q=475) y el remanente se considera como venta perdida.

fill-rate-demanda-empirica

En cuanto a la demanda esperada, ésta es independiente de Q por tanto corresponde simplemente a ponderar los distintos valores de k por la probabilidad de ocurrencia del escenario respectivo. En consecuencia en el ejemplo:

resultado-fill-rate

Lo anterior permite corroborar un resultado que se puede generalizar: Instock <= Fill Rate

Conclusiones: Naturalmente al aumentar el tamaño de Q se incrementa tanto el Instock como el Fill Rate, no obstante, esta decisión no necesariamente es la recomendable dado que aumenta la probabilidad de quedar con stock al final del día (el cual en el ejemplo podría no tener uso alternativo en caso que se decida botar el pan que sobre o podría venderse como pan frío al día siguiente obteniendo usualmente una fracción del costo de fabricación).

Este tipo de escenarios es al que usualmente los tomadores de decisiones se ven enfrentado en problemas de ciclo de vida corto (Modelo Newsvendor) ante lo cual se necesita disponer de estimaciones adicionales.

Problema del Vendedor de Periódicos (Newsvendor Problem)

El Problema del Vendedor de Periódicos (también conocido como Newsvendor Problem) es una forma sencilla de ilustrar una categoría de problemas con demanda incierta (estocástica) pero con distribución de probabilidad conocida, donde se debe determinar el tamaño de pedido o lote económico que minimice una función de costos esperados.

Este problema es de un sólo período debido a que los periódicos que no se logran vender en un día no se pueden vender al día siguiente a un valor de mercado y por tanto cada exceso de inventario (tamaño de pedido superior a la demanda) tiene un costo monetario asociado.

Sin embargo, en algunas ocasiones se asume que si se puede vender el inventario en exceso pero a un precio que usualmente es significativamente menor que el costo de adquisición. Este sería, por ejemplo, el caso de una panadería que vende el pan que le sobra de un día al día siguiente a un precio descontado.

En el mismo contexto, realizar un pedido insuficiente para enfrentar la demanda tiene un costo de oportunidad asociado, que en el mejor de los casos se puede estimar como el margen no logrado por quiebre de stock, pero que en la práctica puede incluso provocar la pérdida del cliente (costo muy complejo de estimar).

Consideremos los siguientes parámetros del Modelo Newsvendor:

  • Costo unitario c.
  • Valor de consignación h (items no vendidos).
  • Costo de quiebre de stock (stock-out) p (costo de imagen).
  • Demanda desconocida con distribución de probabilidad conocida F(x).

La función que permite minimizar el costo esperado asociado al inventario es:

costo-esperado

Donde la solución óptima esta dada por:

solucion-newsvendor

Ejemplo Problema del Vendedor de Diarios (Newsvendor Problem)

Un vendedor de periódicos elige todas las noches que cantidad de periódico él va a pedir al editor. El costo unitario es $1.5 pero él puede devolver al editor periódicos no vendidos y recibir a cambio $0.9. Cada cliente que llega a su tienda y sale sin periódico tiene un costo de $2.5 para el vendedor.  Suponiendo que la demanda por periódicos es uniforme en el intervalo [50,150], ¿cuántos periódicos el vendedor debe pedir diariamente al editor?.

Primero debemos determinar cuáles son los parámetros del modelo: c=$1.5, h=$0.9, p=$2.5 y F(x)~U[50,150]. Luego evaluamos en F(y*) para obtener el tamaño de pedido que minimiza la función de costo esperado:

resultado-newsvendor

La cantidad de periódicos que debe pedir el vendedor es 112 unidades. Notar que si bien en el denominador de la fórmula se considera h con signo positivo, en el ejemplo dicho valor corresponde a un ingreso (lo que el vendedor puede rescatar o recuperar por cada unidad que no logra vender. Esto se conoce alternativamente como salvage value) por tanto se evalúa con signo negativo.

Finalmente al evaluar el tamaño óptimo de pedido en la función de costo esperado se obtiene:

costo-esperado-sol

Donde μ es la media de la variable aleatoria que representa el comportamiento de la demanda.

En el ejemplo la media de una distribución uniforme entre [50,150] es μ=(50+150)/2=100. Finalmente al desarrollar la expresión se obtiene C(112)=$168,752.

Te recomendamos evaluar otro tamaño de pedido (por ejemplo y=100 o y=140) en la función de costos esperado y verificar que el costo que se alcanza es mayor a C(112)=$168,752.

Finalmente: ¿Cuál es la probabilidad de satisfacer la demanda para el vendedor de periódicos en un día cualquiera?.

Si compra y=112 periódicos la probabilidad de Instock es P[D<=112]=(112-50)/(150-50)=62%. Esto implica que la probabilidad de incurrir en un quiebre de stock para el tamaño de pedido que minimiza la función de costos esperados es de un 38% (100%-62%).