Evaluación de Proveedores y Determinación del Tamaño Óptimo de Pedido utilizando EOQ con Descuentos

El siguiente artículo representa la evaluación de 2 proveedores que ofrecen un esquema de descuentos por cantidad por las unidades vendidas, asumiendo que se satisfacen los supuestos simplificadores del modelo de Cantidad Económica de Pedido o EOQ. En particular consideraremos que la demanda del producto es constante y conocida y adicionalmente que el costo unitario de compra dependerá del tamaño del pedido (en este sentido utilizaremos el modelo de Cantidad Económica de Pedido (EOQ) con Descuentos por Cantidad).

Ejemplo EOQ con Descuentos

Una compañía necesita comprar controles remotos y tiene una demanda semestral de 4.800 unidades. Los controles pueden ser comprados o del proveedor A o del B. Los precios por cantidad de cada proveedor están en la tabla abajo:

proveedores-eoq-con-descuen

El costo por pedido es de $30 para cualquiera de los proveedores y el costo anual de inventario es 25% del costo unitario. Adicionalmente la compañía incurre en un costo fijo por emitir un pedido de $10 por concepto de gastos administrativos. ¿De cuál proveedor la compañía debe comprar y cuál es el tamaño del pedido si el objetivo es minimizar costos totales anuales?.

En primer lugar determinamos el tamaño de pedido para cada uno de los tramos de descuentos por cantidad que aplican al Proveedor A. Notar que se considera una demanda anual de 9.600 controles remotos (un año tiene 2 semestres). Para el tramo 1 el pedido se aproxima a la cota superior de dicho intervalo; para el tramo 2 se mantiene el lote obtenido dado que pertenece al intervalo de [200,499] y en el tramo 3 se aproxima el tamaño de pedido a la cota inferior del intervalo (500 unidades) lo cual permite acceder a un precio unitario de $13,60.

eoq-tramos-proveedor-a

En consecuencia los candidatos a óptimo son pedidos de 199, 472 y 500 unidades para el Proveedor A. Para ver cuál de ellos reporta el menor costo total anual se evalúa en la función de costos totales:

costos-totales-proveedor-a

El tamaño óptimo de pedido en caso de seleccionar el Proveedor A es de 500 unidades por pedido.

En el caso del Proveedor B el procedimiento es similar al descrito para el Proveedor A. En este caso los candidatos a óptimo son pedidos de 149, 349 y 474 unidades.

eoq-tramos-proveedor-b

Al evaluar en la función de costos totales (anual) se observa que el tamaño de lote que minimiza los costos para el Proveedor B son 474 controles por pedido.

costos-totales-proveedor-b

Finalmente se procede a comparar los costos mínimos para cada proveedor con lo cual se concluye que se debe comprar al Proveedor A y hacer pedidos de 500 controles, alcanzando un costo total anual de $132.178 (que incluye los costos que se incurren anualmente por concepto de compra, emisión de pedidos y almacenamiento).

Cantidad Económica de Pedido (EOQ) con Descuentos por Cantidad

Uno de los supuestos del modelo de Cantidad Económica de Pedido (o EOQ según sus siglas en inglés) es que el costo de adquisición unitario es independiente del tamaño del pedido, sin embargo, este supuesto es factible de flexibilizar debido a que en muchos casos es razonable asumir que se puede acceder a un determinado descuento por unidad en la medida de pedidos de tamaño mayor.

Para determinados productos, los proveedores suelen ofrecer una escala de descuentos dependiendo del tamaño del pedido. Este tipo de estrategia de venta es frecuentemente utilizado por mayoristas y distribuidores que buscan con esto tener una mayor Rotación de Inventario y en consecuencia disminuir los Días de Inventario (con la correspondiente disminución de los costos de almacenamiento del inventario). Adicionalmente, la escala de descuentos suele estar previamente tabulada y accesible para el comprador.

Ejemplo EOQ con Descuentos por Cantidad

A continuación tomaremos nuevamente los datos del ejemplo de EOQ analizados en el tutorial del Cálculo de la Cantidad Económica de Pedido con WINQSB, sin embargo, en esta oportunidad consideraremos que el costo de almacenamiento anual se puede representar como un porcentaje del costo de adquisición.

  • D: Demanda Anual = 6.000 unidades
  • S: Costo de Emisión = $750
  • H: Costo de Almacenamiento Anual (unitario) = 10% del costo de adquisición (i)

El precio unitario a pagar dependerá del tamaño del pedido según muestra la siguiente tabla:

Descuentos EOQ

Para poder determinar el tamaño de pedido que minimiza los costos totales se debe evaluar cada uno de los tramos de precios.

Notar que H=i*C, es decir, se considera que el costo de almacenar un producto se puede representar como un porcentaje de su costo de adquisición (compra). De esta forma, al aumentar los descuentos (y en consecuencia disminuir el precio de compra) el costo unitario de almacenamiento representado por H=i*C disminuirá y generará un incentivo a pedidos de mayor tamaño (dado que el denominador de la formula a continuación disminuye en magnitud).

EOQ con descuento por cantidad

En el primer tramo (sin descuento) el tamaño de pedido recomendado es de 150 unidades.

En el segundo tramo el tamaño de pedido óptimo según EOQ es de 160,3 unidades, sin embargo, dicho pedido es insuficiente para acceder al precio descontado de $3.500 por tanto para el tramo 2 el pedido óptimo se aproxima a 200 unidades.

Finalmente para el tercer tramo el tamaño del pedido es también insuficiente para acceder al precio unitario de $3.200 por tanto se aproxima a 300 unidades.

En resumen, para el tramo 1 ==> Q=150[u/ped]; tramo 2 ==> Q=200[u/ped]; tramo 3 ==> Q=300[u/ped].

Los fórmula de Costos Totales del Modelo EOQ es: CT=C*D+(D/Q)*S+(Q/2)*H

  • Tramo 1: CT=$4.000*6.000+(6.000/150)*$750+(150/2)*10%*$4.000=$24.060.000
  • Tramo 2: CT=$3.500*6.000+(6.000/200)*$750+(200/2)*10%*$3.500=$21.057.500
  • Tramo 3: CT=$3.200*6000+(6.000/300)*$750+(300/2)*10%*$3.200=$19.263.000

El menor costo se alcanza en el tramo 3 y la cantidad de pedido que minimiza los costos totales será de 300 unidades. Es importante destacar que no necesariamente el tramo con el menor precio unitario será el que tenga el menor costo asociado y por tanto el resultado obtenido en este ejemplo no se puede extrapolar para cualquier caso.