Relación entre la Desviación Absoluta Media (MAD) y la Desviación Estándar del Error (σ)

El concepto de error en una proyección de demanda tiene que ver con la diferencia entre el valor real (observado) y el valor pronosticado. Esto da origen a errores de sobre estimación o sub estimación de la demanda real cuando dichos errores son negativos o positivos, respectivamente. En este contexto cuando los errores que ocurren en el pronóstico de demanda tienen una distribución normal (el caso más común) la Desviación Absoluta Media (MAD) se relaciona con la Desviación Estándar del Error (σ) de la siguiente forma:

relacion-mad-y-desviacion-e

Para ilustrar sobre esta relación consideremos el ejemplo utilizado en el artículo donde calculamos el Error Porcentual Absoluto Medio (MAPE) cuyos pronósticos Ft se obtienen al ajustar una Regresión Lineal a los datos reales de la demanda.

tabla-mape-mad-y-ts

Notar que el MAD calculado a Diciembre es de 36,1[u]. Luego para corroborar el cumplimiento de la relación aproximada entre el MAD y σ se requiere verificar si los errores del pronóstico se distribuyen normal. Para esta evaluación utilizaremos el software Easyfit y su herramienta de ajuste de distribuciones. Es importante en este punto destacar que es deseable contar con más datos para realizar el ajuste, no obstante, nos interesa mostrar el procedimiento.

ajustar-distribucion-normal

El programa nos entrega el siguiente histograma donde la curva de color rojo representa el comportamiento de una distribución normal (teórica). Adicionalmente en las estadísticas descriptivas se puede obtener que el error medio (considerando la naturaleza del signo del error) es -0,0833 (aproximado) lo cual constituye un elemento a favor de la relación que deseamos verificar.

ajuste-distribucion-normal-

Si volvemos a los resultados que da origen la planilla Excel podemos calcular la Desviación Estándar del Error σ (celda color naranjo) que es 45,50[u] a través de la fórmula =DESVEST(J3:J14).

calculo-desviacion-estandar

Con estos resultados corroboramos si efectivamente 1 MAD es equivalente (aproximadamente) a 0,8 desviaciones estándar del error. La conclusión es que para los datos de este ejemplo dicha relación es efectiva (por cierto aproximada) por lo cual luego de verificar que los errores del pronóstico se distribuyen normal (razonablemente) bastaría con calcular el MAD para poder generar una estimación razonable de la desviación estándar del error (o viceversa).

mad-y-sigma

Error Porcentual Absoluto Medio (MAPE) en un Pronóstico de Demanda

El Error Porcentual Absoluto Medio (MAPE o Mean Absolute Percentage Error) es un indicador del desempeño del Pronóstico de Demanda que mide el tamaño del error (absoluto) en términos porcentuales. El hecho que se estime una magnitud del error porcentual lo hace un indicador frecuentemente utilizado por los encargados de elaborar pronósticos debido a su fácil interpretación. Incluso es útil cuando no se conoce el volumen de demanda del producto dado que es una medida relativa. Por ejemplo, afirmar que el «error porcentual promedio es de un 4%» es más fácil de comprender que cuando se dice «el error absoluto medio por período es de 1.000 unidades» (que sería la información que podríamos obtener del MAD y que en abstracto no provee información si esta magnitud de error es aceptable o no).

La fórmula para el cálculo del MAPEError Porcentual Absoluto Medio es:

formula-mape

La siguiente imagen representa una serie de tiempo de 12 meses donde At representa la demanda real de un producto cualquiera y Ft el pronóstico utilizando una Regresión Lineal. La ecuación de la regresión ajustada es y=5,6993*x+217,12 donde la variable y representa la demanda y la variable x el período (mes).

regresion-lineal-mape

El detalle de los resultados se presenta a continuación donde en la columna D se muestran los datos reales y en la columna E los pronósticos. Por ejemplo para el mes de Enero (mes 1) el pronóstico se obtiene como F1=5,6993*1+217,12=223 (aproximado arbitrariamente al entero más cercano).

excel-calculo-mape

Luego obtenemos el error porcentual absoluto para cada mes del período de evaluación (celdas amarillas de la tabla anterior). Notar que en el ejemplo dicho cálculo correspondería para el mes de Enero en la fórmula F3/D3 donde el numerador (F3) es el error absoluto del período y el denominador (D3) la demanda real del mes. Finalmente se repite el procedimiento para cada uno de los meses lo cual se facilita al hacer uso de una planilla Excel.

calculo-mape

En conclusión el Error Porcentual Absoluto Medio es de un 14,56%. De forma complementaria se puede calcular el MAD y la Señal de Rastreo (TS) de modo de tener un mayor número de indicadores para interpretar de forma adecuada el desempeño del pronóstico.

tabla-mape-mad-y-ts

Es conveniente graficar tanto el comportamiento del MAD como la Señal de Rastreo (TS) para facilitar la interpretación de los resultados. A continuación se presentan los resultados:

grafico-mad-y-ts

Notar que la magnitud media absoluta del error aumenta en los últimos períodos. En cuanto al comportamiento de la señal de seguimiento o TS si bien ésta varía en el rango comúnmente aceptable de [-4,4] MADs, las sub estimaciones sucesivas del valor real de la demanda de los meses de Agosto, Septiembre y Octubre marcan una tendencia creciente en su comportamiento, lo cual se compensa luego con las sobre estimaciones de los meses de Noviembre y Diciembre. A continuación un vídeo de nuestro canal de Youtube con la implementación en Excel del ejemplo descrito en este artículo:

¿Quieres tener el archivo Excel con el cálculo del Error Porcentual Absoluto Medio (MAPE) de este Ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Pronóstico de Demanda con Media Móvil Simple

El método de Media Móvil Simple (o Promedio Móvil Simple) es un procedimiento de cálculo sencillo que pertenece a la categoría de pronósticos de Series de Tiempo, es decir, que utiliza información histórica del desempeño de la variable que se desea pronosticar para poder generar un pronóstico de la misma a futuro. Es decir, se considera válida la premisa que el pasado es de utilidad para predecir el futuro.

El escenario ideal para la utilización del método de Media Móvil Simple es cuando la demanda real no presenta mayores variaciones de corto plazo, no presenta una tendencia marcada e idealmente no presenta estacionalidades.

En este contexto, por ejemplo, se podría esperar que muchos productos alimenticios presentan estas características (arroz, aceite, azúcar, etc) y por tanto su aplicación en principio puede resultar adecuada.

La función matemática que permite obtener un pronóstico utilizando Media Móvil Simple es:

Media Movil Simple

Donde Ft es la demanda pronosticada para el período t y At la demanda real para el período t. La constante o parámetro n determina el número de períodos a promediar.

Mientras mayor sea el valor de n el pronostico suele presentar menor variabilidad y aproximar una tendencia de la serie de tiempo. Por cierto, esto último no necesariamente es mejor y por tanto se pueden utilizar distintos valores de n para efectos de evaluación y luego comparar el desempeño.

Media Móvil Simple (Ejemplo)

En la tabla a continuación se muestra el procedimiento de pronóstico de demanda con Media Móvil Simple con n=3. Por ejemplo, el pronóstico de Abril se obtiene promediando los valores reales de Enero, Febrero y Marzo: F(Abril)=(200+230+260)/3=230. El pronóstico de Mayo se obtiene promediando los valores reales de Febrero, Marzo y Abril: F(Mayo)=(230+260+180)/3=223. Notar que los pronósticos no consideran decimales (decisión arbitraria).

Calculo Media Movil Simple

Para tener una primera aproximación a lo acertado del pronóstico se recomienda graficar los datos reales de demanda y los obtenidos con el pronóstico. De esta forma se obtiene un acercamiento sobre la magnitud de los errores del pronóstico y la naturaleza de éste, es decir, si se genera una sobre o sub estimación de la demanda real. Este análisis se puede complementar con el Cálculo del MAD y la Señal de Rastreo para el pronóstico generado.

grafico-media-movil-simple

Se puede observar que en 6 de los 9 pronósticos realizados se genera una subestimación de la demanda real lo cual nos da indicios que este método de pronóstico no es lo más adecuado en este caso. Dicho esto puede ser recomendable explorar con un método que considere el efecto de la tendencia de la serie, como por ejemplo, una Regresión Lineal Simple.

¿Quieres tener el archivo Excel con la resolución de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]

Cálculo del MAD y la Señal de Rastreo para un Pronóstico de Demanda

Un aspecto clave cuando se realiza un Pronóstico de Demanda es evaluar éste en cuanto a su ajuste respecto a la información real que se dispone. Para ello se introduce el concepto error que básicamente mide la diferencia entre el valor real y el valor pronosticado para un período específico.

Formalmente el error de un pronóstico e_{t} se define como e_{t}=A_{t}-F_{t} donde A_{t} es la demanda real u observada en el período t y F_{t} es la demanda pronosticada para el mismo período.

De esta forma, si por ejemplo, para un período dado (digamos por ejemplo, período 1), la demanda real es de 150 unidades y nuestro pronóstico para el mismo período fue 100 unidades, entonces e_{1}=A_{1}-F_{1}=150-100=50>0, entonces tenemos una subestimación de la demanda real de una magnitud de 50 unidades.

De forma análoga, si la demanda real es de 150 unidades pero nuestro pronóstico para el mismo período, es, por ejemplo, 250 unidades el error correspondiente es e_{1}=A_{1}-F_{1}=150-250=-100<0, por tanto en este caso tenemos una sobrestimación de la demanda real de una magnitud de 100 unidades.

En la práctica un pronóstico perfecto es imposible y por tanto el tomador de decisiones sabe que debe lidiar con un grado de error.

En este contexto se pueden identificar 2 tipos de errores: error sistemático el cual depende del método de pronóstico que utilizamos y el error aleatorio el cual es propio de la variación inherente de la situación que se modela. Luego,  nos interesa minimizar la presencia y magnitud del error sistemático.

Para ello utilizamos 2 indicadores que generalmente se analizan en forma conjunta para tener una visión más objetiva de lo adecuado (o no) de un pronóstico de demanda. Dichos indicadores son el MAD y la Señal de Rastreo (TS). En este contexto a continuación se presentan las fórmulas para el cálculo del MAD y la Señal de Rastreo para un pronóstico de demanda haciendo uso de un método de series de tiempo.

MAD (Error Absoluto Medio): Que proporciona una medición del error promedio del pronóstico (en valor absoluto) y queda definido matemáticamente por:

MAD

Señal de Rastreo (TS – Tracking Signal): Mide la desviación del pronóstico respecto a la variación de la demanda.

Señal de Rastreo

Cálculo del MAD y la Señal de Rastreo

A continuación se presenta el cálculo del MAD y la Señal de Rastreo para el pronóstico de demanda de un producto determinado utilizando Media Móvil Simple con n=3. Notar que A_{t} corresponde a la demanda real (observada) para el período (mes) t y F_{t} es la demanda pronosticada para el mes t (obtenido a través del método de media móvil según lo señalado anteriormente).

tabla-calculo-mad-y-ts

El siguiente video tutorial muestra cómo se obtienen los resultados detallados en el resumen anterior:

En el artículo Interpretación de la Señal de Rastreo de un Pronóstico de Demanda detallamos la interpretación de este indicador que nos permite evaluar la presencia de error sistemático y si algún tipo de error (sobrestimación o subestimación) predomina en nuestras estimaciones.

Así también se propone revisar el aporte para efectos de evaluación que constituye disponer de un indicador de desempeño adicional denominado MAPE (Error Porcentual Absoluto Medio) que permite tener una estimación relativa (porcentual) del error del pronóstico.

¿Quieres tener el archivo Excel con el Cálculo del MAD y la Señal de Rastreo (TS) de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]