Intervalo de Confianza para un Pronóstico de Demanda

En el siguiente artículo abordaremos cómo calcular un Intervalo de Confianza para un Pronóstico de Demanda, lo cual permite incorporar de forma explícita el impacto que tiene la incertidumbre en la planificación de las actividades comerciales y operacionales de una empresa.

Para ello utilizaremos el Método de Alisado Exponencial o Suavizamiento Exponencial el cual hemos descrito previamente en nuestro sitio. (Ver también: Suavizamiento Exponencial Doble Ejercicios Resueltos).

Consideremos una serie histórica con la demanda de un producto para un periodo de 12 semanas. Se requiere desarrollar un intervalo de confianza del 95% para el Pronóstico de Demanda de la semana 13 utilizando el Método de Suavizamiento Exponencial Simple con α=0,3.

Para ello adoptaremos el supuesto que los errores del pronóstico se distribuyen normalmente lo cual es algo que por supuesto se puede verificar con una dedicación mayor de trabajo y para lo cual se puede utilizar un software de análisis estadístico como Easyfit.

En este contexto la tabla a continuación se muestra el pronóstico comenzando a contar de la semana 4 (esta es una decisión arbitraria dado que podría haber comenzado antes).

Notar que el primer pronóstico corresponde simplemente a la Media Móvil Simple de las primeras 3 semanas.

Luego el pronóstico de la semana 5 se obtiene de la aplicación de la siguiente fórmula: F5=F4+α(A4-F4) que al reemplazar se obtiene F5=1.775+0,3*(1.860-1.775)=1.800,5~1.801 (hemos aproximado éste y los otros pronósticos al entero más cercano según se puede apreciar en la fórmula de Excel utilizada):

intervalo-de-confianza-pron

Ahora necesitamos calcular la desviación estándar del error del pronóstico la cual se obtiene simplemente evaluando en los datos de la tabla anterior según se muestra a continuación:

desviacion-estandar-error-c

Finalmente el intervalo de confianza de un 95% para el pronóstico de la semana 13 se obtiene: (notar que F13=1.766+0,3*(1.780-1.766)=1.770,2~1.770)

intervalo-confianza-95-porc

El resultado anterior es consistente con el proporcionado por la herramienta de Cálculos de Probabilidad de Geogebra donde para una distribución de probabilidad normal (recordar el supuesto de normalidad del error adoptado anteriormente) con media μ=1.770 (F13) y desviación estándar SF=71, el área achurada en color azul representa los valores contenidos en el intervalo de confianza de un 95% (% del área bajo la curva achurada).

intervalo-de-confianza-geog

Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda

El Método de Mínimos Cuadrados o Regresión Lineal se utiliza tanto para pronósticos de series de tiempo como para pronósticos de relaciones causales. En particular cuando la variable dependiente cambia como resultado del tiempo se trata de un análisis de serie temporal.

En el siguiente artículo desarrollaremos un Pronóstico de Demanda haciendo uso de la información histórica de venta de un producto determinado durante los últimos 12 trimestres (3 años) cuyos datos se observan en la siguiente tabla resumen:

tabla-datos-regresion-linea

La ecuación de mínimos cuadrados para la regresión lineal es la que se muestra a continuación donde β0β1 son los parámetros de intercepto y pendiente, respectivamente:

ecuacion-regresion-lineal

Estimar los valores de dichos parámetros es sencillo haciendo uso de una planilla Excel tal como muestra la tabla a continuación:

calculo-regresion-lineal-co

Luego evaluamos en las ecuaciones presentadas anteriormente para obtener los valores de β0 y β1:

resultados-parametros-regre

Una vez obtenido los parámetros de la regresión lineal se puede desarrollar un pronóstico de demanda (columna color naranja) evaluando en la ecuación de la regresión para los distintos valores de la variable independiente (x).

Por ejemplo, para el primer trimestre el pronóstico es: Y(1)=441,71+359,61*1=801,3.

Observación: los valores de los pronósticos han sido redondeados arbitrariamente a un decimal para mayor comodidad.

regresion-lineal-tabulada-e

Notar que con la información que hemos obtenido podemos calcular el MAD y la Señal de Rastreo y utilizar estos indicadores para validar la conveniencia de utilizar este procedimiento como dispositivo de pronóstico.

Adicionalmente puede resultar de interés consultar el artículo Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab que muestra cómo abordar el caso de realizar una regresión lineal con más de una variable independiente (explicativa).

Siguiendo con nuestro análisis a continuación podemos desarrollar un pronóstico de demanda para los próximos 4 trimestres (un año) que corresponden a los trimestres 13, 14, 15 y 16:

  • Y(13)=441,71+359,61*13=5.116,64
  • Y(14)=441,71+359,61*14=5.476,25
  • Y(15)=441,71+359,61*15=5.835,86
  • Y(16)=441,71+359,61*16=6.195,47

Si bien el procedimiento anterior es válido puede ser resumido haciendo uso de las herramientas de análisis de datos de Excel o simplemente realizando un ajuste de una regresión lineal en un gráfico de dispersión de la misma forma que abordamos en el articulo sobre el Método de Descomposición. Para ello luego de realizar el gráfico nos posicionamos en una de las observaciones y luego botón derecho del mouse para seleccionar «Agregar línea de tendencia…».

regresion-lineal-grafico-di

Luego en la interfaz de Excel activamos las opciones «Presentar ecuación en el gráfico» y «Presentar el valor R cuadrado en el gráfico» (este último indicador según se aborda en los cursos de estadística consiste en una medida de la bondad de ajuste de la regresión).

Notar que los valores obtenidos para los parámetros de la regresión son similares salvo menores diferencias por efecto de aproximación.

regresion-lineal-ajustada-e

Otra opción disponible para ajustar una Regresión Lineal haciendo uso de Excel es a través del Complemento llamado Herramientas para análisis.

Su activación es simple: en el menú Archivo (esquina superior izquierda en Excel) ir a Opciones, luego Complementos, a continuación a la derecha de donde dice Complementos de Excel presionar Ir… y luego activar la Herramientas para análisis.

herramienta para análisis excel

Una vez activada las Herramientas para análisis, se puede encontrar ésta abajo del complemento Solver en el menú de Datos.

análisis de datos excel

Luego de las opciones disponibles que nos ofrece este complemento seleccionamos Regresión.

regresión análisis de datos

A continuación seleccionamos el Rango Y de entrada las celdas correspondientes a la variable dependiente (Ventas) y en Rango X de entrada las celdas correspondientes a la variable independiente (Trimestre).

Debemos activar adicionalmente la casilla Residuos si deseamos obtener un pronóstico para las ventas del Trimestre 1 al Trimestre 12 (junto al cálculo del error o residuo de la estimación).

interfaz regresión análisis de datos

Finalmente presionamos Aceptar lo que generará una nueva hoja en nuestra planilla de cálculo.

Un extracto de los resultados es el que se presenta a continuación, donde en color celeste se destaca los coeficientes asociados a los parámetros de la regresión lineal β0 y β1, respectivamente, y en color naranjo el pronóstico obtenido para cada uno de los doce trimestres al utilizar la ecuación de la regresión.

Por ejemplo: Y(1)=441,67+359,61*1=801,28. El residuo o error correspondiente para dicho período (Trimestre 1) es: e_{1}=A_{t}-F_{t}=600-801,28=-201,28.

resultados análisis regresión

¿Quieres tener el archivo Excel con el ajuste de la Regresión Lineal de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]

Cómo hacer un Histograma con Geogebra

En un artículo anterior nos referimos a Cómo hacer un Histograma con Excel y EasyFit y a continuación mostraremos cómo poder desarrollar el mismo procedimiento utilizando el software de distribución gratuita Geogebra el cuál ya hemos utilizado previamente para la Resolución Gráfica de un modelo de Programación Lineal y como resulta evidente su aplicación no se ve limitada a lo anterior.

Los pasos a seguir son muy sencillos y los detallamos a continuación:

Paso 1: Abrir el programa Geogebra y en el Menú «Vista» seleccionar «Hoja de Cálculo».

hoja-de-calculo-geogebra

Paso 2: Copiar y Pegar los datos a granel en la planilla (Columna A) que desplegara el programa en la esquina superior derecha. En el ejemplo utilizaremos los mismos datos (40) del artículo anterior.

hoja-de-calculo-planilla-ge

Paso 3: En el Menú seleccionar el icono con barras azules (con forma de histograma) y en las opciones que se desplegaran seleccionar «Análisis Una Variable».

analisis-una-variable-geoge

Paso 4: Se desplegara la ventana «Fuente de Datos» donde se podrán observar los valores ingresados en la Columna A. Luego seleccionar «Analiza». Importante: Si los datos de la Columna A no aparecen en la ventana de «Fuente de Datos» debes posicionarte sobre la letra A de la planilla de cálculo y repetir el Paso 2 y 3. La imagen a continuación muestra cómo se deberían visualizar los datos de la Columna A antes de proceder con el Paso 4.

analisis-variable-geogebra

Paso 5: Listo!. Ya hemos generado un histograma con Geogebra. Se puede observar que existe una barra que se puede desplazar para ajustar la cantidad de clases que tiene el histograma según lo que nos parezca razonable. En la imagen a continuación hemos seleccionado 6 clases para mostrar la consistencia de los resultados con lo obtenido previamente con Excel y Easyfit. Notar adicionalmente que en el eje vertical se considera por defecto la frecuencia absoluta («n»).

histograma-geogebra

Finalmente se puede obtener de forma muy sencilla un resumen de las estadísticas de los datos proporcionados a granel seleccionando el icono «Muestra Estadísticas» (símbolo de sumatoria). Adicionalmente existen otras opciones interesantes que permiten generar  un Diagrama de Caja o Diagrama de Tallo y Hojas. Te proponemos el desafío para que lo puedas revisar directamente!

estadisticas-histograma-geo

Cómo hacer un Histograma con Excel y EasyFit

En el siguiente artículo mostraremos cómo hacer un histograma aplicado a una serie de datos a granel. Para ello utilizaremos 2 programas computacionales frecuentemente utilizados para estos propósitos: Excel y EasyFit.

Recordemos que un histograma consiste en una representación gráfica  a través de un diagrama de barras, donde cada barra es proporcional a la frecuencia de los valores representados. El histograma como herramienta de análisis gráfica que resume información nos ayuda para tener una primera visión de si, por ejemplo, la distribución de los datos se asemeja al comportamiento de una función de probabilidad conocida.

Consideremos los siguientes 40 datos a granel que consideran la medición de un cierto fenómeno de interés:

datos-a-granel-para-histrog

A continuación generaremos una tabulación de la información utilizando algunos conceptos estadísticos básicos. Primero determinaremos la cantidad de clases «k» para lo cual se pueden utilizar múltiples criterios y donde se selecciona aquel que otorga una cantidad de clases «razonable». En nuestro ejemplo consideraremos k=6 clases.

cantidad-de-clases-histogra

Luego determinamos el Rango «R» que consiste en la diferencia entre la mayor y menor observación de los datos a granel. R=Máximo(Xi)-Mínimo(Xi)=2,8-0,5=2,3.

Ahora determinamos la amplitud de cada clase «a». Notar que el concepto de «Unidad» esta relacionado con los datos que se disponen que en nuestro ejemplo consideran un decimal, en consecuencia se define como unidad a 0,1.

amplitud-histograma

Finalmente calculamos el Límite Inferior (LI) y Límite Superior (LS) utilizando las siguientes fórmulas:

  • Límite Inferior (LI) = Mínimo Dato (Xi) – 0,5 «Unidad»
  • Límite Superior (LS) = Limite Inferior de la clase + amplitud

De acuerdo a lo anterior estamos en condiciones de construir una tabla que resume la información de los datos proporcionados a granel:

datos-tabulados-histograma

Notar, por ejemplo, que para la primera clase el Límite Inferior (LI=0,45) se obtiene restando al Mínimo Dato (en el ejemplo el dato 9 con valor 0,5) menos 0,5*(0,1).

El Límite Superior de la primera clase (LS=0,85) se obtiene sumando al Límite Inferior (LI=0,45) la amplitud obtenida previamente (a=0,4).

Adicionalmente los valores en la columna etiquetada con «Mi» representa la marca de la clase (por ejemplo en M1 es igual a (0,45+0,85)/2=0,65).

En la columna n se contabilizan las observaciones que corresponden a la clase lo que se denomina como frecuencia absoluta (por ejemplo en la clase 1 se observan 3 datos que están en el intervalo entre 0,45 y 0,85).

En f se considera la frecuencia relativa, es decir, la proporción de datos sobre el total de la muestra que pertenecen a la clase (por ejemplo, para la clase 1 es f=3/40).

Finalmente en N y F se representa la frecuencia absoluta acumulada y frecuencia relativa acumulada, respectivamente.

Si generamos un gráfico de columna en Excel con los valores de la frecuencia relativa de cada clase y como etiqueta de datos (línea horizontal) la marca de clase, se obtiene lo siguiente:

grafico-histograma-excel-2

Cabe destacar que existe una serie de software estadístico que permite procesar este tipo de análisis de forma rápida e intuitiva. A continuación mostraremos cómo generar un histograma utilizando EasyFit el cual esta disponible en una versión de evaluación de 30 días y en una licencia académica de 69 Euros. Para ello copiamos y pegamos los 40 datos en una columna de la interfaz del programa y luego seleccionamos el icono con forma de rayo.

easyfit-datos-a-granel

A continuación se desplegara el menú a continuación donde sólo será necesario seleccionar OK.

easyfit-analisis-distribuci

El programa ejecutará una rápida rutina donde ajustará un importante número de distintas funciones de probabilidad teóricas a los datos proporcionados. Por ejemplo, en el siguiente gráfico mostramos el histograma de los datos (que por cierto es consistente con lo que hemos obtenido previamente en Excel) y donde se ha ajustado una distribución normal a los datos (línea color rojo).

Claramente la función de densidad de probabilidad ajustada es una aproximación a la distribución de los datos y resulta de interés decidir si una distribución particular es representativa de la naturaleza de los datos. Para esto es necesario realizar un Test de Bondad de ajuste sobre lo cual nos referiremos en un próximo artículo.

distribucion-normal-histogr