Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos

El Control Estadístico de Procesos (CEP) es una metodología que da la confianza estadística de que un componente está dentro de una tolerancia sin tener la necesidad de medir cada componente. Como su nombre lo sugiere es un control del proceso (no del producto) y es un indicador más que una solución. En este contexto la importancia del Control Estadístico de Procesos radica en los siguientes aspectos:

  1. Se utiliza como apoyo al proceso de Control de Gestión.
  2. Consiste en la aplicación de métodos estadísticos a la medición y análisis de la variación en cualquier proceso.
  3. Permite diagnosticar el estado del proceso: Se dice que el proceso está bajo control estadístico (estable) si no presenta señales de que existe alguna causa asignable de variación y en consecuencia representa un proceso predecible. Una causa asignable es detectable y posible de eliminar con una justificación económica.

Las principales herramientas del Control Estadístico de Procesos lo constituyen las cartas de control (de promedios y rangos), las cuales se aplican en el monitoreo de las características de calidad de un producto y detecta cuando el proceso esta fuera de control. A continuación presentaremos un ejemplo que permite la evaluación de si un proceso se encuentra bajo control estadístico mediante la elaboración e interpretación de las gráficas de control de promedios y rangos.

Gráfica de Promedios y Gráfica de Rangos

Una máquina automatizada a alta velocidad fabrica resistores para circuitos electrónicos. La máquina está programada para producir un lote muy numeroso de resistores de 1000 OHMS cada uno, siendo éste el valor ideal para cada resistor y admitiéndose una variación sobre dicho valor de ± 25 OHMS.

Con el fin de ajustar la máquina y crear una gráfica de control para utilizarla a lo largo de todo el proceso, se tomaron 15 muestras con cuatro resistores cada una. La lista completa de muestras y sus valores medidos es la siguiente:

tabla-datos-control-estadis

¿Se encuentran el proceso bajo control estadístico?. Grafique los datos en una gráfica de control de promedio (X) y de rango (R) con los limites de control. Para el cálculo del promedio muestral considere los resultados aproximados a un decimal. Comente e interprete los resultados.

En primer lugar necesitamos calcular los límites de control estadístico para las gráficas de promedio y rango. Para ello se deben considerar las siguientes fórmulas y parámetros:

formulas-limites-de-control
tabla-parametros-control-es

Con esta información procedemos a calcular el promedio y rango de cada una de las 15 muestras. Por ejemplo el promedio de la muestra 1 se obtiene de X1=(1010+991+985+986)/4=993 y el rango R1=1010-985=25 (la diferencia en magnitud de la mayor y menor observación de la muestra). Se replica el procedimiento para el resto de las muestras lo cual se facilita haciendo uso de una planilla Excel según se observa a continuación:

calculo-promedio-y-rango

Finalmente se obtienen los límites de control estadístico los cuales se resumen en la siguiente tabla:

calculo-limites-de-control-

A continuación se grafican los resultados de cada una de las muestras (celdas color amarillo de la planilla anterior) en contrastes con los límites de control.

grafica-promedios-control-e
grafica-rangos-control-esta

  • El proceso se encuentra bajo control estadístico. Tanto en la gráfica de promedios y rangos los resultados de las muestras están dentro de los límites de control. Recomendamos a nuestros usuarios revisar el artículo Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17.

  • En la gráfica de promedios se observa una dispersión aleatoria respecto a la media del proceso aun cuando llama la atención de la media de las muestras 4 y 5.

  • En la gráfica de rangos se observa un leve tendencia creciente a contar de la muestra 9. Si bien las observaciones se mantienen dentro de los límites de control, esta situación se debe tener bajo alerta dado que muestra un aumento en la variabilidad.

Problema de Selección de Cartera de Proyectos a través de la Programación Entera

La Programación Entera provee una forma eficiente de enfrentar los problemas de selección de proyectos a ejecutar dentro de una cartera de potenciales proyectos a realizar, donde cada uno de éstos tiene asociado un tiempo de ejecución, requerimientos de fondos de inversión y necesidades adicionales. El siguiente artículo aborda la formulación de un modelo de optimización de Programación Entera que permita seleccionar los proyectos a realizar que maximice el Valor Presente Neto (VPN) del conjunto, respetando restricciones presupuestarias, políticas de inversión y de disponibilidad de personal.

Problema de Selección de Cartera de Proyectos

Consideremos una empresa que tiene en carpeta 8 proyectos, cada uno de los cuales con una estimación del VPN, la necesidad de financiamiento (en dólares) y los requerimientos de personal. La información se resume en la siguiente tabla:

tabla-inversion-proyectos

Por ejemplo, el Proyecto 1 requiere de 120 profesionales para ser realizado, con una inversión inicial de 15 millones de dólares y representa un Valor Presente Neto (VPN) de 8 millones de dólares. Asumiremos que la empresa dispone de 155 profesionales, un presupuesto para inversión de 40 millones de dólares. Adicionalmente para efectos de minimizar el riesgo la empresa debe ejecutar al menos 4 proyectos. Los proyectos 3 y 6 son excluyentes, es decir, sólo uno de los 2 puede ejecutarse.

Variables de Decisión:

variable-invertir-proyecto

Probablemente el lector se pregunte si es equivalente definir Xi: dólares a invertir en el Proyecto i. El problema subyacente a dicha formulación es asumir que si, por ejemplo, se invierte 7,5 millones de dólares en el Proyecto 1 se obtiene un VPN de 4 millones de dólares, es decir, que el VPN es proporcional al dinero invertido. Recordar que la proporcionalidad es un supuesto básico de la Programación Lineal donde claramente no provee una forma realista de representación en este caso, donde la naturaleza de la decisión es realizar o no un proyecto, sin dejar espacio para decisiones «intermedias».

Función Objetivo:

funcion-objetivo-inversion-

Consiste en maximizar la sumatoria del Valor Presente Neto de los proyectos (en millones de dólares). En este contexto el valor óptimo corresponderá a la suma del VPN de aquellos proyectos que finalmente se llevaran a cabo.

Restricciones:

Se debe respetar la disponibilidad de trabajadores:

restriccion-disponibilidad-

La inversión total no puede superar el presupuesto disponible:

restriccion-presupuesto-pro

Al menos se deben realizar 4 proyectos para efectos de diversificación del riesgo:

al-menos-4-proyectos

Los proyectos 3 y 6 son excluyentes:

proyectos-excluyentes

Luego de implementar computacionalmente el problema anterior con Solver se alcanza los siguientes resultados:

solucion-optima-proyectos

La solución óptima consiste en desarrollar los proyectos 2, 4, 5, 6 y 7 lo que reporta un VPN de 10,7 millones de dólares (valor óptimo).

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4355″]

Ejemplo del Problema del Flujo Máximo en Programación Entera resuelto con Solver

Este tipo de problemas (Problema del Flujo Máximo) es similar al Problema de Ruta más Corta, pero ahora se busca determinar el flujo máximo entre un nodo fuente y un nodo destino, los que están enlazados a través de una red, con arcos con capacidad finita, tal como se presenta en la siguiente figura. Notar que los números asignados a cada uno de los arcos representan los flujos máximos o capacidades correspondientes a cada arco.

ruta-flujo-maximo

Problema del Flujo Máximo

Desde el punto de vista de la Programación Entera podemos plantear la situación de la siguiente forma:

Variables de Decisión:

variables-flujo-maximo

Función Objetivo: Maximizar las unidades que salen del nodo de origen (1) a los que éste conecta (2, 4 y 5) o alternativamente maximizar las unidades que llegan al nodo de destino (8) desde los que conectan a él (3, 6 y 7).

funcion-flujo-maximo

Restricciones:

Restricciones de Flujo Máximo: La cantidad de unidades que sale de cada nodo de origen a un nodo de destino no puede superar la capacidad detallada en el arco, por ejemplo, del nodo 1 al nodo 2 sólo se pueden enviar 7 unidades.

restricciones-flujo-maximo

Restricciones de Balance de Flujo en los Nodos: Debe existir un equilibrio entre la cantidad de unidades que llega a un nodo y las que de éste salen, por ejemplo el número de unidades que se envía desde el nodo 1 al 4 (si es que así fuese el caso) debe ser igual a lo que desde el nodo 4 se envían al nodo 3 y 6.

balance-flujo-maximo

No Negatividad e Integralidad: Las variables de decisión de decisión deben cumplir las condiciones de no negatividad. Adicionalmente exigiremos que éstas adopten valores enteros aún cuando se podría flexibilizar dicha situación lo que daría origen a un problema de Programación Lineal.

no-negatividad-flujo-maximo

Luego de implementar el modelo de optimización anterior con Solver se alcanza la siguiente solución óptima y valor óptimo:

solucion-flujo-maximo

Notar que el flujo máximo de unidades que puede llegar al nodo de destino son 32 unidades (valor óptimo) donde cualquiera de las funciones objetivos propuestas proporciona el mismo resultado (en particular hemos utilizado la primera de ellas). Los valores de las celdas en color amarillo representan la solución óptima, es decir, la cantidad de unidades que fluyen en cada combinación de un nodo origen destino.

En el siguiente tutorial de nuestro canal de Youtube se detalla la implementación computacional que permite alcanzar los resultados anteriormente expuestos:

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4352″]

Punto de Reposición e Inventario de Seguridad con Demanda y/o Lead Time Variable

En la revisión de las herramientas básicas para la gestión de inventarios destaca el modelo EOQ (Economic Order Quantity) o análogamente en su traducción al español conocido como Cantidad Económica de Pedido. Este modelo tiene una serie de supuestos simplificadores entre los cuales destaca que tanto la demanda y el tiempo de reposición (o lead time) es constante y conocido. Lo anterior limita significativamente su aplicación práctica dado que la regla general es que la gestión de inventarios esta afecta a la incertidumbre.

Al existir incertidumbre (en la demanda y/o lead time) será necesario establecer un nivel de servicio conocido como Instock (α) que permita acotar la probabilidad de quiebre de stock a un valor objetivo (1-α) durante el tiempo de reposición. En este contexto el Punto de Reposición (ROP) determina el momento en el tiempo en el cual será necesario realizar una nueva orden de pedido.

Las siguientes fórmulas permiten calcular el Punto de Reposición (ROP) para distintos escenarios de incertidumbre de la demanda y/o tiempo de reposición:

formulas-calculo-rop

Ejemplo Caso 1: Demanda Fija – Lead Time Fijo

Una empresa enfrenta una demanda anual de 1.500 unidades de un producto en particular. Los costos unitarios de mantener inventario son de $0,18 anual. El costo fijo de emitir un pedido (independiente del tamaño del mismo) es de $15 y el tiempo de reposición del proveedor es de 2 semanas. Determine el tamaño óptimo de pedido utilizando EOQ y el Punto de Reposición. Asuma que el año tiene 50 semanas.

El tamaño de pedido que permite minimizar la función de costos totales es:

q-optimo-caso-1

El Punto de Reposición corresponde a:

rop-caso-1

La empresa deberá realizar una nueva orden de pedido (de 500 unidades) cada vez que su inventario alcance las 60 unidades. Una pregunta natural es ¿cuál es la probabilidad de tener quiebre de stock durante el período de reposición?. La respuesta: 0%. Esto debido a que se asume que no existe incertidumbre y por tanto los pedidos llegaran justo a tiempo. En consecuencia en este escenario no es necesario disponer de un stock de seguridad.

Ejemplo Caso 2: Demanda Variable – Lead Time Fijo

La demanda diaria por una cerveza se distribuye normal con media de 50 litros y desviación estándar de 15 litros. El tiempo de reposición es de 10 días. Si se desea un nivel de servicio Instock de un 95% determine el Punto de Reposición y el Inventario de Seguridad.

rop-caso-2

Notar que Z(95%)~1,645 lo cual se puede obtener utilizando Excel y la fórmula: =DISTR.NORM.ESTAND.INV(95%). También se podría asumir que no está permitido comprar cerveza en fracciones de litros. En dicho caso ROP debe ser de 579[litros] (notar que el criterio de aproximación es al entero superior más cercano de modo que se garantice el nivel de servicio mínimo).

En cuanto al inventario de seguridad, éste corresponde a:

inventario-seguridad-caso-2

Ejemplo Caso 3: Demanda Fija – Lead Time Variable

La demanda diaria de un artículo es de 50 unidades. El tiempo de reposición sigue una distribución normal con media de 8 días y desviación estándar de 2 días. Obtenga el ROP que permita asegurar un nivel de servicio de un 95%.

rop-caso-3

El Punto de Reposición debe ser de 567[unidades].

Ejemplo Caso 4: Demanda Variable – Lead Time Variable

La demanda diaria de una hamburguesa sigue una distribución normal con media de 1.000 unidades y desviación estándar de 100 unidades. El tiempo de reposición también se distribuye normal con media de 8 días y desviación estándar de 2 días. Encuentre el Punto de Reposición para un nivel de servicio de un 95%.

rop-caso-4

Método del Centroide aplicado a un Problema de Localización de Instalaciones

El Método del Centroide es una técnica para ubicar instalaciones que considera las instalaciones existentes, las distancias entre ellas y la cantidad de productos a transportar entre las mismas. Se suele suponer que los costos de envío o transporte de entrada y salida son iguales y no incluye costos de envío especiales.

La aplicación del Método del Centroide requiere ubicar las instalaciones existentes en un sistema de coordenadas. La elección de dicho sistema de coordenadas es completamente arbitraria, no obstante, actualmente son populares las medidas de longitud y latitud debido a la rápida adopción de los sistemas GPS. Sin perjuicio de lo anterior y con el objetivo de representar ejemplos sencillos se pueden utilizar coordinadas arbitrarias (X,Y).

El Centroide se encuentra calculando las coordenadas X e Y que dan como resultado el costo de transporte mínimo. Para ello se utilizan las fórmulas:

formulas-coordenadas-centro
Donde:
nomenclatura-centroide

Ejemplo Método del Centroide

Se desea determinar la ubicación óptima de una planta productiva (en adelante Planta E) mediante el Método del Centroide con respecto a otras 3 plantas demandantes a las cuales abastece de un cierto producto, que en lo sucesivo denotaremos por A, B y C y cuyas coordenadas (X,Y) son (150,75), (100,300) y (275,380), respectivamente. En este contexto, las plantas A, B y C requieren 6.000, 8.200 y 7.000 unidades anuales, respectivamente, las cuales serán transportadas desde la Planta E. Se supone una relación lineal entre los volúmenes enviados y los costos de envío (sin cargos adicionales).

Dada la información anterior calculamos las coordenadas en X e Y de la Planta E.

calculo-formulas-centroide

¿Minimizará la localización propuesta para la Planta E por el Método del Centroide la sumatoria de la distancia euclidiana respecto a las plantas demandantes A, B y C?. Para responder esta pregunta formulamos el siguiente modelo de Programación No Lineal no restringida:

minimizar-distancia-euclidi

Luego de implementar el problema anterior en Solver de Excel obtenemos la coordenada (X,Y)=(175,00, 251,67) que determina una sumatoria de distancias totales de 66.266,67[u] que es levemente inferior a la obtenida a través del Método del Centroide donde la sumatoria de las distancias alcanza las 66.662,80[u].

comparacion-centroide-con-m

Esta diferencia menor se explica por la relativa similitud de los resultados obtenidos a través de los 2 métodos según se aprecia en la siguiente representación gráfica:

localizacion-centroide