Ejemplo Pronóstico de Demanda con Media Móvil Ponderada

En el contexto de los métodos de series de tiempo aplicados para los Pronósticos de Demanda, el método de Media Móvil Ponderada es una variantes de la técnica de Media Móvil Simple donde existe la posibilidad de modificar las ponderaciones que tiene cada uno de los datos en el cálculo del promedio. Este método resulta ser útil cuando es válida la premisa de que el pasado más reciente tiene un mayor poder predictivo respecto al futuro (por lo cual se suele asociar una mayor ponderación en el cálculo del promedio), sin embargo, en caso de existir estacionalidad en el patrón histórico de la demanda puede ser necesario ponderar con mayor fuerza un dato más antiguo de la serie de tiempo.

La fórmula de cálculo para una Media Móvil Ponderada se presenta a continuación:

formula-media-movil-pondera

En la nomenclatura anterior Ft representa el pronóstico para el período t, At es la demanda real (observada) para el período t y Wt representa las ponderaciones seleccionadas para el promedio ponderado. Por supuesto la sumatoria de dichas ponderaciones debe ser igual a 1 (o un 100%).

Ejemplo Media Móvil Ponderada

Para ilustrar la aplicación del método utilizaremos la serie histórica que presentamos en el artículo sobre cómo utilizar una regresión lineal para realizar un pronóstico de demanda. En esta oportunidad aplicaremos el método de media móvil simple con n=3 (como medio de contraste) y una media móvil ponderada de 3 períodos igualmente pero con ponderaciones seleccionadas arbitrariamente de 60%, 30% y 10%, respectivamente.

planilla-media-movil-ponder

En la columna «MP» se incluyen los resultados del promedio móvil ponderado redondeando los resultados al entero más cercano. Notar que para una mayor comodidad se pueden fijar las ponderaciones a celdas específicas, lo que facilita copiar la fórmula a los períodos siguientes. A continuación y para facilitar la interpretación de los resultados se presenta un gráfico que contrasta los datos de la serie histórica y los dos dispositivos de pronóstico utilizados.

grafico-media-movil-pondera

Se puede apreciar que en la medida que las ponderaciones seleccionadas para cada período se aproximen a 1/3, el pronóstico obtenido a través de la media móvil ponderada se asemejará al comportamiento de los resultados del promedio móvil simple con n=3. En este contexto es importante destacar que no existe procedimiento exacto que permita seleccionar de forma inequívoca las ponderaciones Wt de un promedio móvil ponderado y en consecuencia la «prueba y error» suelen ser estrategias utilizadas para evaluar el ajuste del pronóstico a los datos reales.

Finalmente sí el objetivo es proponer alguno de los métodos de pronósticos utilizados en este artículo se recomienda complementar el análisis calculando el MAD y Señal de Rastreo (TS) en cada caso, de modo de disponer de mayores elementos de juicio antes de tomar una decisión.

¿Quieres tener el archivo Excel con la resolución de este problema?. Recomiéndanos en Facebook o Google+ utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo.

[sociallocker]Media Móvil Ponderada[/sociallocker]

Problema de Corte Ensamblado y Producción de Sillas resuelto con Solver

Una empresa de Rústicos “El Viejo Baúl” fabrica entre muchos otros productos tres tipos de sillas A, B y C, las cuales se venden a precio de 11, 13 y 12 dólares cada una y respectivamente. Las sillas pasan por tres procesos, Corte, Ensamblado y Pintado, para lo cual se dispone máximo de 17, 13 y 15 horas respectivamente a la semana para dedicar a estas operaciones a estos productos. La silla tipo A requiere 3 horas para corte, 1 hora para ensamblado y 3 horas para pintura. La silla tipo B requiere 1 hora para corte, 4 horas para ensamblado y 3 horas para pintura. Y finalmente la silla tipo C, requiere de 5 horas para corte, 2 para ensamblado y 2 horas para pintura. De acuerdo a la anterior información:

a. Resuelva el problema con variables continuas  y señale los resultados para cada variable.

Variables de Decisión: Se estable el nivel de producción semanal para cada una de las variedades de silla según se detalla a continuación:

variables-decision-sillas

Función Objetivo: Maximizar los ingresos semanales asociados a la producción y venta de las sillas.

funcion-objetivo-sillas

Restricciones: En los procesos de corte, ensamblado y pintura se debe respetar la disponibilidad de horas semanales. Adicionalmente se deben satisfacer las condiciones de no negatividad.

restricciones-sillas

La implementación computacional del problema anterior con Solver de Excel permite alcanzar los siguientes resultados:

solucion-optima-problema-li

Donde la solución óptima es A=1,914286, B=1,828571 y C=1,885714 con valor óptimo V(P)=67,45714.

b. Modifique las condiciones de las variables y elíjalas enteras (integer) y observe el cambio entre la respuesta del punto a y esta nueva hallada.

Al definir las variables de decisión enteras estamos frente a un modelo de Programación Entera (siendo el escenario inicial un problema de Programación Lineal). Los resultados son:

solucion-optima-problema-en

La solución óptima es A=1B=2 y C=2 con valor óptimo V(PE)=61.

c. Concluya qué sucedió entre variables continuas y variables enteras.

Es importante observar que el dominio de soluciones factibles del problema entero (parte b) es un subconjunto del dominio de soluciones factibles del problema lineal (parte a). Por tanto es natural que al no obtener una solución con valores enteros para las variables de decisión en el problema inicial, el valor óptimo necesariamente disminuirá en la variante entera de dicho problema de maximización (V(PE)<V(P)). También se puede destacar que la solución entera no necesariamente se alcanza al aproximar los resultados fraccionarios de una solución de un problema lineal al entero inferior o superior más cercano. En consecuencia, para abordar de forma eficiente la resolución de un modelo que considere valores enteros para las variables de decisión requiere de una alternativa algorítmica específica como por ejemplo el Método Branch and Bound.

A continuación encontrarás un enlace de descarga del archivo Excel utilizado para la resolución del problema de corte, ensamblado y producción de sillas. En el archivo se incluyen 2 hojas que corresponden a la parte a) y b) del problema propuesto. Produccion de Sillas.

Problema de Producción y Transporte resuelto con Solver

El siguiente problema de producción y transporte fue enviado por uno de nuestros usuarios de Colombia de la ciudad de Santa Cruz de Lorica: «Una compañía que fabrica Cereal de Maíz tiene dos campos de siembra, el Campo I y el Campo II, y dos molinos, A y B. Las capacidades de suministro mensual de maíz de los Campos I y II son 125 y 245 toneladas, respectivamente. El molino A requiere por lo menos 190 toneladas de Maíz al mes y el B por lo menos 158 toneladas mensuales. Los costos de transporte en unidades monetarias por tonelada de cada Campo a cada molino son los siguientes: 2 del Campo I al molino A, 3 desde el Campo I al molino B, 4 desde el Campo II al molino A, y 5 desde el Campo II al molino B».

¿Qué cantidad de Maíz debe transportarse desde cada Campo I y II a cada molino A y B de forma que se logre minimizar el costo total de transporte? ¿Cuál es ese costo mínimo? ¿Hay algún envío que no debe realizarse para conseguir dicho costo mínimo?.

Para una mejor comprensión del problema anterior representaremos gráficamente la información anterior donde se puede apreciar los distintos oferentes (Campos) y demandantes (Molinos), además de la capacidad de producción y demanda (en toneladas mensuales) junto a los costos de transporte para cada combinación origen destino.

diagrama-problema-transport

Problema de Producción y Transporte

1. Variables de Decisión: (con i=I,II y j=A,B)

variable-decision-produccio

2. Función Objetivo: Minimizar los costos que se asumen mensualmente por el transporte de cereal desde los campos a los molinos.

funcion-objetivo-produccion

3. Restricciones: 

Capacidad de Producción de los Campos: La cantidad de toneladas que se transporte desde cada campo a cada uno de los molinos no puede superar su capacidad de producción.

restriccion-capacidad-trans

Demanda de los Molinos: Cada molino debe recibir un mínimo de toneladas mensuales de cereal desde los campos.

restriccion-demanda-transpo

No Negatividad: Las variables de decisión deben adoptar valores reales no negativos.

A continuación se detalla la implementación computacional del modelo de optimización haciendo uso de Solver de Excel:

solver-produccion-y-transpo

Notar que la celda F9 es una fórmula asociada a la función objetivo que pondera los costos unitarios de transporte por las toneladas transportas en cada combinación de origen (campos) destino (molinos). La celda E3 es la suma de C3 y D3 (análogamente E4=C4+D4) representando las restricciones de capacidad. De similar forma la celda C5 es una fórmula que considera la suma de las celdas C3 y C4 (por supuesto D5=D3+D4). Una vez generada la estructura del modelo de Programación Lineal se carga éste en la interfaz de Solver:

interfaz-solver-produccion-

La solución óptima (celdas color amarillo) consiste en transportar 125 toneladas del Campo I al Molino B y el Campo II envía 190 y 33 toneladas a los Molinos A y B, respectivamente. El valor óptimo es de 1.300 unidades monetarias.

solucion-optima-produccion-

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook o Google+ utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo.

[sociallocker]Problema de Producción y Transporte[/sociallocker]

Como resolver un modelo de Programación Lineal con OpenSolver

OpenSolver es una excelente complemento de Excel que permite resolver modelos de optimización. En el siguiente artículo se describe cómo resolver un modelo de Programación Lineal con esta herramienta (previa descarga e instalación de OpenSolver en Excel 2010). Para fines académicos consideraremos un modelo lineal con 2 variables de decisión, no obstante se puede extender su aplicación a problemas de mayor tamaño sin inconvenientes.

modelo-lineal-infinitas-sol

A continuación necesitamos preparar una planilla Excel que considere los parámetros y variables del modelo (este paso es similar a la carga de un modelo en Solver de Frontline). Se puede apreciar que las celdas B2 y C2 (color amarillo) han sido asignadas a las variables de decisión y la función objetivo (celda azul) corresponde a la celda E2 que es una fórmula que vincula las variables de decisión y los respectivos parámetros que ponderan a éstas. Finalmente las celdas D5 y D6 son fórmulas que representan el «lado izquierdo» de las restricciones del problema (por ejemplo la celda D5 corresponde a B2*B5+C2*C5 o equivalentemente SUMAPRODUCTO(B2:C2;B5:C5)).

carga-modelo-lineal-opensol

Una vez completado el paso anterior se debe ejecutar OpenSolver cuyo menú esta disponible en la pestaña de «Datos» de Excel. Luego se selecciona «Model…» según se muestra a continuación:

model-opensolver

La interfaz para implementar el modelo es bastante similar a la versión tradicional de Solver (Frontline). Se define la celda objetivo (E2) en maximización; a continuación se selecciona el rango de variables de decisión (según se muestra en la siguiente imagen) y las restricciones. Si intentas replicar la estructura del ejemplo que desarrollamos en este artículo se debería ver así:

interfaz-opensolver

Luego seleccionamos «Save Model» (cambiará la estructura de la planilla la cual adoptará colores lo cual es una de las características de OpenSolver que hacen de este complemento una herramienta intuitiva para el usuario).

carga-opensolver-color

Finalmente seleccionamos «Solve»:

solve-opensolver

El programa se ejecutará y proporcionará (de existir) la solución óptima (X=0 e Y=60) y valor óptimo (V(P)=1.200) del problema de optimización:

solucion-optima-opensolver

Los resultados alcanzados son coincidentes con los alcanzados en la resolución gráfica del problema que hemos abordado en el artículo «Qué significa un Precio Sombra igual a Cero en Programación Lineal« según muestra la imagen a continuación:

grafico-infinitas-solucione

A continuación puedes descargar el archivo con la resolución en OpenSolver de este problema de modo de que puedas familiarizarte con este complemento de Excel: Modelo de Programación Lineal resuelto con OpenSolver

Cómo descargar e instalar OpenSolver en Excel 2010

OpenSolver es una alternativa gratuita a Premium Solver Pro y What’sBest! que permite resolver modelos de optimización haciendo uso de Excel. Este complemento fue desarrollado y actualmente mantenido por Andrew Mason y estudiantes del departamento de ciencias de la ingeniería de la Universidad de Auckland (Nueva Zelanda). En el siguiente artículo mostraremos cómo descargar e instalar OpenSolver en un computador que utiliza Windows 7 Home Premium como sistema operativo y Microsoft Office Professional Plus 2010.

Paso 1: Descargar OpenSolver21 (A la fecha de este artículo la versión 2.1 del 6 de Septiembre de 2012 es la más reciente).

Actualización: La última versión disponible a Octubre de 2015 es la edición 2.7.1 con fecha de lanzamiento 28 de Junio de 2015. Para descargar dicha versión se puede acceder directamente a la Página de Descarga e Instalación de OpenSolver.

Paso 2: Descomprimir el archivo ZIP de preferencia en una carpeta o en un lugar a elección.

extraer-opensolver

Paso 3: Abrir el archivo «OpenSolver.xlam» (es aquel con el icono de Excel y un pequeño cuadrado color rojo en la esquina superior derecha).

opensolver-xlam

Paso 4: Es probable que Excel solicite tu autorización para ejecutar el programa. En este caso debes seleccionar «Habilitar macros».

habilitar-macros-opensolver

Una vez concluidos los pasos anteriores OpenSolver debería estar disponible en la pestaña de Datos en Excel (esquina superior derecha) tal como se muestra a continuación. En efecto se podrá encontrar a la derecha del acceso a Solver.

opensolver-en-excel

El complemento estará disponible hasta cerrar Excel. Si se desea que OpenSolver este siempre disponible al ejecutar Excel se deben copiar todos los archivos que están incluidos en el archivo comprimido (ZIP) de la instalación (aquellos que se pueden observar en la imagen del Paso 3) en el directorio de «add-in» de Excel. La ruta típica suele ser: C:/Documents and Settings/»user name»/Application Data/Microsoft/Addins (se debe tener en cuenta que el acceso puede cambiar dependiendo de la versión de Windows que se este utilizando).