Ejemplo del Problema del Flujo Máximo en Programación Entera resuelto con Solver

Este tipo de problemas (Problema del Flujo Máximo) es similar al Problema de Ruta más Corta, pero ahora se busca determinar el flujo máximo entre un nodo fuente y un nodo destino, los que están enlazados a través de una red, con arcos con capacidad finita, tal como se presenta en la siguiente figura. Notar que los números asignados a cada uno de los arcos representan los flujos máximos o capacidades correspondientes a cada arco.

ruta-flujo-maximo

Problema del Flujo Máximo

Desde el punto de vista de la Programación Entera podemos plantear la situación de la siguiente forma:

Variables de Decisión:

variables-flujo-maximo

Función Objetivo: Maximizar las unidades que salen del nodo de origen (1) a los que éste conecta (2, 4 y 5) o alternativamente maximizar las unidades que llegan al nodo de destino (8) desde los que conectan a él (3, 6 y 7).

funcion-flujo-maximo

Restricciones:

Restricciones de Flujo Máximo: La cantidad de unidades que sale de cada nodo de origen a un nodo de destino no puede superar la capacidad detallada en el arco, por ejemplo, del nodo 1 al nodo 2 sólo se pueden enviar 7 unidades.

restricciones-flujo-maximo

Restricciones de Balance de Flujo en los Nodos: Debe existir un equilibrio entre la cantidad de unidades que llega a un nodo y las que de éste salen, por ejemplo el número de unidades que se envía desde el nodo 1 al 4 (si es que así fuese el caso) debe ser igual a lo que desde el nodo 4 se envían al nodo 3 y 6.

balance-flujo-maximo

No Negatividad e Integralidad: Las variables de decisión de decisión deben cumplir las condiciones de no negatividad. Adicionalmente exigiremos que éstas adopten valores enteros aún cuando se podría flexibilizar dicha situación lo que daría origen a un problema de Programación Lineal.

no-negatividad-flujo-maximo

Luego de implementar el modelo de optimización anterior con Solver se alcanza la siguiente solución óptima y valor óptimo:

solucion-flujo-maximo

Notar que el flujo máximo de unidades que puede llegar al nodo de destino son 32 unidades (valor óptimo) donde cualquiera de las funciones objetivos propuestas proporciona el mismo resultado (en particular hemos utilizado la primera de ellas). Los valores de las celdas en color amarillo representan la solución óptima, es decir, la cantidad de unidades que fluyen en cada combinación de un nodo origen destino.

En el siguiente tutorial de nuestro canal de Youtube se detalla la implementación computacional que permite alcanzar los resultados anteriormente expuestos:

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4352″]