Análisis ABC de Ventas de Productos mediante un Diagrama de Pareto

Uno de los aspectos claves en la competitividad de una Cadena de Suministro es tomar decisiones acertadas en cuanto a los tamaños de pedidos a realizar a los proveedores, teniendo en consideración un entorno con una demanda incierta o aleatoria (es decir, que no se tiene certeza del valor que adquirirá dicha variable de antemano) y productos con distinto ciclo de vida. En este contexto las metodologías cuantitativas constituyen una contribución en este desafío de determinación de pedidos óptimos, siendo el Análisis ABC de la venta de los productos una de sus principales herramientas.

Análisis ABC de Ventas

Consideremos una empresa que maneja sólo 14 SKU (Stock Keeping Unit) y que ha recolectado la estadística de ventas de cada uno de sus productos en el último año (por ejemplo se vendieron 207 unidades del producto A en el mes de Enero). Los datos se resumen a continuación:

analisis-abc-productos

La Venta Promedio (PROM) del producto A es de 334,8 unidades (se obtiene simplemente de la sumatoria de las ventas de Enero a Diciembre de dicho producto dividido en 12 meses, es decir, (207+293+200+…+412)/12=334,8). La Desviación Estándar (D.EST) de la venta del producto A es de 116,9 unidades y el Coeficiente de Variación (CV) o Índice de Variabilidad se obtiene al dividir la Desviación Estándar por la Venta Promedio. Por cierto los cálculos se facilitan al hacer uso de una planilla Excel, lo cual ahorra esfuerzos en la medida que se trabaja con un número creciente de productos.

A continuación se desarrolla un Análisis ABC de la venta de los productos el cual se basa en la aplicación de la Regla de Pareto. Para ello se ordena en forma descendente los productos según los datos de la columna Venta Promedio (PROM) en color amarillo, luego se calcula cuánto representa dicho promedio respecto a la sumatoria de todos los promedios (que es 2.866,4 unidades), por ejemplo, para la SKU E es 1.666,7/2.866,4=58,14% (aprox). Finalmente la última columna (% ACU.) corresponde al porcentaje acumulado de la venta total de productos para un cierto nivel de SKU acumuladas (por ejemplo, en conjunto los productos E, A y B corresponden al 80,40% de la venta total).

tabla-pareto-abc

El Diagrama de Pareto correspondiente a los datos anteriores se puede obtener fácilmente haciendo uso de Excel según detallamos en el artículo Cómo hacer un Diagrama de Pareto con Excel 2010.

diagrama-pareto-abc-product

La información obtenida a través del análisis ABC de venta de productos es útil toda vez que orienta respecto a aquellos productos con mayor rotación de inventarios, la variabilidad de la demanda y la concentración de la venta en distintos SKU. Todos estos elementos orientan la toma de decisiones y permite priorizar de mejor forma las distintas iniciativas en la Gestión de la Cadena de Suministro (SCM), buscando garantizar el suministro en tiempo y cantidad de aquellos productos que son los más relevantes para la empresa.

Modelo de Localización y Transporte con Preferencias

Los modelos de optimización que integran decisiones de localización y transporte han sido materia de análisis detallado en nuestro sitio como se aborda en los artículos Optimización de una Red Logística de Transporte y Localización de Centros de Distribución y el Problema de Transbordo en una Red Logística de Transporte Multiperíodo, entre otros. En esta ocasión incorporaremos un concepto adicional a la problemática anterior a través de la incorporación de las preferencias de los clientes por ser abastecidos por determinados centros de oferta. A este problema lo llamaremos Modelo de Localización y Transporte con Preferencias de Clientes y a continuación describiremos un caso particular que permita visualizar una alternativa de formulación sencilla con su correspondiente implementación computacional.

Asumamos que cada cliente (demandante) ha manifestado su preferencia por ser abastecido por determinados oferentes (potenciales). En este contexto cada cliente elegirá siempre su mejor (menor) prioridad de las alternativas ofertas disponibles, es decir, de aquellas que se decidan instalar (localizar).

Consideremos los siguientes parámetros para el modelo:

Sea C_{ij} el costo de abastecer al cliente j (para el total de su demanda) desde el centro de oferta i. Como se puede apreciar asumiremos que cada cliente debe ser abastecido por solo un oferente. Adicionalmente y para efectos de ilustración consideraremos 4 oferentes (potenciales) y 6 clientes.

costo transporte oferentes a demandantes

Sea K_{i} el costo de instalar el centro de oferta i. Por ejemplo, habilitar (localizar) el oferente 1 tiene un costo fijo de 3.500 unidades monetarias.

costo instalación oferente

Sea p_{ij} la preferencia que manifiesta el cliente j por ser abastecido por el oferente i. Asumiremos que un menor valor representa una mayor preferencia. Por ejemplo, el cliente 1 prefiere ser abastecido por los oferentes 4,1,3,2, respectivamente. En este sentido si se llegará, por ejemplo, solo a instalar el oferente 1 y 3, el cliente 1 debe ser abastecido del oferente 1 dado que de las 2 alternativas este oferente representa una mayor preferencia.

matriz de preferencias

Dada las definiciones anteriores, el Modelo de Localización y Transporte con Preferencias de Clientes es el siguiente:

localización y transporte con preferencias

Donde x_{i} es una variable binaria que adopta un valor 1 si se instala el centro (oferente) i (cero en caso contrario. Por otra parte y_{ij} es una variable binaria que indica si el cliente j se abastece (exclusivamente) desde el oferente i (cero en caso contrario). Luego, la función objetivo representa la minimización de los costos de instalación de los oferentes y el transporte que se origina entre éstos y los clientes.

En cuanto a las restricciones tenemos:

  • (1) Determina que cada cliente sea abastecido desde un único centro de oferta.
  • (2) Los clientes pueden optar a ser abastecidos desde aquellos oferentes que hayan sido seleccionados.
  • (3) La preferencia de cada cliente corresponderá al promedio ponderado de columna correspondiente en la matriz de preferencias (asociada a dicho cliente) por la decisión de abastecimiento desde un oferente dado.
  • (4) Se impone a través de la preferencia calculada en (3) que cada cliente sea atendido por aquel oferente que le reporta la mayor satisfacción (menor puntuación en el ejemplo según lo descrito previamente).
  • (5) Las variables de decisión son binarias.

Luego de implementar en Solver el modelo de Programación Entera anterior se alcanzan los siguientes resultados:

solución óptima localización con preferencias

Se observa que se instalan los centros de oferta 1, 2 y 4, que representa un costo de localización (total) de $9.000. En cuanto a las decisiones de distribución, el oferente 1 abastece al cliente 4; el oferente 2 abastece a los clientes 2 y 5 y finalmente el oferente 4 abastece a los clientes 1, 3 y 6. El costo total de transporte es de $12.062, de modo que el costo total es $21.062 (valor óptimo). Notar que cada cliente recibe los pedidos de su mejor alternativa posible (marcado con color verde). A continuación se encuentra disponible el archivo Excel con la implementación computacional del Modelo de Localización y Transporte con Preferencias para ser descargado.

[sociallocker]Localización y Transporte con Preferencias[/sociallocker]

Qué es Just in Time (JIT o Justo a Tiempo)

La filosofía de manufactura Just in Time (conocido simplemente por su acrónimo JIT en inglés o en su traducción al español Justo a Tiempo) postula que se debe producir solo lo que sea necesario, en la cantidad que sea necesaria y en el momento que sea necesario. Lo anterior establece como un imperativo de cualquier negocio que aspira ser de Clase Mundial (World Class) la reducción de capital inmovilizado con el correspondiente impacto en la eficiencia de los procesos y la reducción de costos.

Qué hace el Just in Time (JIT)

Just in Time (Justo a Tiempo) se basa sobre 3 pilares u objetivos básicos:

  1. Atacar los problemas fundamentales
  2. Eliminar despilfarros (desperdicios)
  3. Buscar la simplicidad

qué hace el just in time

1. Atacar los Problemas Fundamentales

Consiste en atacar las causas fundamentales de los problemas, resolviendo éstos sin encubrirlos. El enfoque anterior se puede representar a través de una analogía denominada “mar de las existencias” que indica básicamente que el nivel de inventario o existencias suele ocultar problemas en los procesos.

problemas inventario jit

El nivel del mar representa las existencias o inventario y las operaciones de la empresa se visualizan como un barco. Cuando una empresa intenta bajar el nivel del mar, en otras palabras, reducir el nivel del inventario, descubre rocas, es decir, problemas.

El solo hecho de identificar los problemas no garantiza por cierto que estos se resuelvan, sin embargo, se cimientan las bases para poder enfrentar las causas que lo generan (acá se puede hacer uso de metodologías complementarias de la Gestión de Calidad como el Diagrama de Ishikawa y Diagrama de Pareto). De esta forma se deba atacar las causas de los problemas que causan las ineficiencias y no sólo concentrarse en los síntomas o efectos.

jit reducir inventarios

En palabras del ingeniero japones Taiichi Ohno, precursor de la filosofía Just in Time (JIT) al interior del sistema de producción del fabricante de automóviles Toyota.

Si se ha entendido bien lo que es el control de la producción, entonces es innecesario el control de inventarios.

De esta forma y en consecuencia a lo discutido anteriormente se pueden establecer diferencias entre el enfoque Tradicional y el enfoque de Just in Time JIT:

enfoque jit

2. Eliminar Despilfarros (Desperdicios)

El desperdicio (waste en inglés) se refiere a toda inversión de costo, tiempo, material, mano de obra o recursos aplicada en exceso versus lo mínimo indispensable para ofrecer un Producto y/o Servicio que exceda cualitativa y cuantitativamente las expectativas del cliente.

De esta forma en la manufactura Justo a Tiempo (JIT) el énfasis debe estar en eliminar todas aquellas actividades que no añaden valor al producto con lo que se reduce costos, mejora la calidad, reduce los plazos de fabricación (lead time logístico) y aumenta el nivel de servicio al cliente (que se puede medir cuantitativamente a través de indicadores como Instock, Fill-rate, entre otros).

Algunos ejemplos de los tipos de desperdicios más comunes son:

1. Sobreproducción
2. Tiempo de Espera
3. Transporte
4. Inventario
5. Proceso inadecuado (reprocesamiento)
6. Movimientos innecesarios
7. Defectos en Productos

Luego una forma de poder enfrentar los desperdicios es a través de un enfoque sistémico como el propuesto en JIT que se basa en los siguientes criterios:

  • Hacer el producto y/o prestar el servicio bien en la primera oportunidad
  • El operario asume la responsabilidad de controlar, es decir, el operario trabaja en autocontrol
  • Garantizar el buen desempeño del proceso mediante el Control Estadístico de Procesos (CEP)
  • Analizar y prevenir los riesgos potenciales que hay en un Proceso
  • Reducir stocks (Inventarios) al máximo

De esta forma se pueden establecer metas ambiciosas que sean consistentes con el objetivo de eliminar los desperdicios. Entre ellas destacan:

  • ?Cero defectos (Seis Sigma)
  • ?Cero Tiempo de Preparación (Setup Time)
  • ?Cero Inventarios
  • ?Cero Manejo de Materiales
  • ?Cero Lead Time (Plazos)
  • ?Tamaño de Lote Unitario (Q* bajos)
  • ?Productos que satisfagan las necesidades (Calidad)

3. Buscar la Simplicidad

Por regla general los enfoques de producción simples están asociados a una gestión más eficaz. El primer tramo del camino hacia la búsqueda de la simplicidad abarca 2 zonas:

  • Flujo de Material
  • Control de las Líneas de Flujo

Un enfoque simple respecto al flujo de material es eliminar las rutas complejas y priorizar líneas de flujo más directas, en lo posible unidireccionales. Otra alternativa es agrupar los productos en familias que se fabrican en una línea de flujo, con lo que se facilita la gestión en células de producción (celdas de manufactura).

De forma complementaria la simplicidad del Justo a Tiempo (JIT) también se aplica al manejo de las líneas de flujo. Un ejemplo de ello es el sistema Kanban, en el que se arrastra el trabajo (sistema Pull o Jalar que consiste en producir sólo lo necesario, tomando el material requerido de la operación anterior).

flujo jit

En resumen el enfoque Just in Time (JIT) o Justo a Tiempo se basa en el control físico del material para identificar los desperdicios y forzar su eliminación. JIT es una filosofía propia de la Ingeniería Industrial que consiste en la reducción de desperdicio (actividades que no agregan valor) es decir todo lo que implique sub-utilización en una Cadena de Suministro desde compras hasta producción.

Requisitos del Just in Time (JIT)

1. ?Nivelado de la Producción: consiste en adaptar los niveles de producción a los cambios que se observan en el comportamiento de la demanda. De esta forma se busca que el Plan Maestro de la Producción sea altamente sensible y adaptable a la aleatoriedad de la Demanda, disminuyendo al mínimo la producción de unidades innecesarias.

nivelación de la producción

2. Estandarización de Operaciones: se busca que los niveles de producción sean equilibrados en todos los procesos utilizando la cantidad mínima de operaciones y recursos, además de minimizar el trabajo en curso (WIP).

estandarización operaciones

3. ?Reducción del Tiempo de Fabricación: consiste en implementar un conjunto de estrategias congruentes que apunten a la reducción de los tiempos requeridos para fabricar los productos. Destaca la reducción del tiempo de operación en cada proceso, reducción de los tiempos de transporte y la reducción de los tiempos de espera o tiempos muertos entre procesos (esto último, por ejemplo, a través del Balance de una Línea de Ensamble).

reducir tiempo de fabricación

4. ?Reducción del Tiempo de Preparación: usualmente se asume el setup como irreducible y dado, en efecto en las fórmulas tradicionales de Lote Económico (EOQ) se observa un trade off entre los costos de emisión de pedidos y los costos de almacenamiento de inventario. En este sentido la filosofía JIT reconoce la importancia de reducir el tiempo de emisión o preparación al mínimo posible.

De esta forma bajos setups y lotes pequeños llevan naturalmente a bajos lead times, ?acortando el horizonte de planificación y el pronóstico es mas preciso. Adicionalmente ?el sistema puede cambiar rápido para atender un cambio en la demanda, aumentando la flexibilidad del sistema.

lotes just in time

5. Distribución en Planta y Polivalencia: se busca privilegiar a través de la distribución de planta o layout y un esquema de organización del trabajo colaborativo y polivalente, de modo de aprovechar al máximo la disponibilidad de tiempo y capacidades de los trabajadores.

distribución en planta y polivalencia

Consistente con esta estrategia se puede utilizar el tiempo sobrante (disponible) para múltiples propósitos con fines productivos entre los que destacan: transferencia de trabajadores a otras líneas, disminución de horas extraordinarias, reuniones de círculos de calidad, prácticas en mejora de programación, mantenimiento y reparación de máquinas, mejora de herramientas e instrumentos, etc.

Cómo implementar Just in Time (JIT) en la Empresa

?La adopción del sistema de manufactura Justo a Tiempo o JIT debe nacer como parte de una Planificación Estratégica, es decir, con una mirada de largo plazo que sea consistente con la ?adaptación de los requisitos y principios del JIT, bajo un ambiente de control y evaluación constante.

En este contexto implementar Just in Time (JIT) no es sencillo y se debe lidear con un importante numero de obstáculos que dificultan su adopción, entre los que destacan:?

  • Compromiso de la Directiva y Trabajadores
  • Disciplina de Trabajo
  • Redistribución de la Planta
  • Relación con los Proveedores

Por tanto no se deben hacer falsas expectativas esperando resultados a corto plazo.

En relación a aquellas empresas que se enfrentan por primera vez a la implementación de un sistema JIT se recomienda la utilización de un proyecto piloto que cumpla con los siguientes requisitos:

  • No debe ser un producto nuevo
  • El proceso debe ser conocido
  • No se debe escoger un producto crónico o problemático
  • No se debe escoger un producto con atraso para su entrega

De esta forma se pueden acotar los riesgos asociados a una deficiente implementación.

Finalmente en relación a la metodología de implementación se identifican 5 fases secuenciales que dada la evidencia empírica son adecuadas para la ejecución del JIT:

  1. ?Primera Fase: Educación (clave)
  2. ?Segunda Fase: Distribución y Polivalencia
  3. ?Tercera Fase: Mejoras en el proceso
  4. ?Cuarta Fase: Mejoras en el control
  5. Quinta Fase: La ejecución

implementación just in time

Just in Time (JIT) o Justo a Tiempo orienta a los procesos para que éstos funciones de forma correcta, correctamente la primera vez.

Problema de Transbordo en una Red Logística de Transporte Multiperíodo

Una empresa multinacional de productos de consumo masivo que opera a nivel nacional tiene 2 plantas de producción donde fabrican un solo producto para transportar a 2 locales con capacidad máxima de producción de 1.000 y 1.500 unidades mensuales, respectivamente. Uno de los locales está en el norte y otro en el sur de Chile. Para llegar a estos locales se tiene un centro de distribución que sólo abastece el norte y otro que sólo abastece el sur. Además de esto se tiene un centro de distribución en la ciudad capital (Santiago) que se abastece de los otros 2 centros de distribución y que despacha tanto al norte como al sur. Una red logística que representa el Problema de Transporte con Transbordo anterior se presenta a continuación:

red-logistica-de-transporte

La demanda de los locales para los próximos 2 meses es:

demanda-problema-transbordo

Adicionalmente sólo los centros de distribución norte y sur tienen capacidad para almacenar unidades de inventario de modo de satisfacer una demanda futura. El costo unitario mensual de almacenar inventario es de $1,5 y $0,8, para el centro de distribución norte y sur, respectivamente.

Formule y resuelva un modelo de Programación Lineal que permita determinar el plan de distribución óptimo para el problema de transbordo que representa la Gestión de una Cadena de Suministro. Defina claramente las variables de decisión, función objetivo y restricciones.

Problema de Transbordo en una Red Logística de Transporte

Variables de Decisión:

variables-de-decision-trans

Parámetros:

parametros-transbordo

Función Objetivo: se busca minimizar durante el período de planificación los costos de la logística de transporte desde las plantas a los centros de distribución, desde los centros de distribución a los locales, desde los centros de distribución a Santiago y desde Santiago a los locales, en conjunto con los costos de inventario en los centros de distribución.

funcion-objetivo-transbordo

Restricciones:

Capacidad de Producción de las Plantas: lo que envía mensualmente cada planta a cada uno de los centros de distribución (norte y sur) no puede superar la capacidad máxima de producción de la respectiva planta.

capacidad-plantas-transbord

Balance en los Centros de Distribución: la cantidad de productos que recibe un centro de distribución desde las plantas en un mes, considerando adicionalmente el inventario inicial y lo que se desee dejar en inventario al final del mes respectivo, deberá ser igual a lo que dicho centro de distribución envíe en aquel mes a los locales y al centro de distribución en Santiago.

balance-distribucion-transb

Demanda de los Locales: los productos que demande mensualmente cada local (1 o 2) deberá ser satisfecho desde los centros de distribución, incluyendo lo que eventualmente se envíe desde Santiago.

demanda-locales-transbordo

Balance en Santiago: los productos que recibe mensualmente Santiago desde los centros de distribución norte y sur deberá ser igual a lo que este centro de distribución envíe a los 2 locales que abastece (Santiago a diferencia de los centros de distribución norte y sur no almacena inventario).

balance-santiago

Rutas Infactibles: no es posible enviar productos de forma directa (en cualquiera de los meses) desde el centro de distribución norte al local 2 y desde el centro de distribución sur al local 1.

rutas-infactibles-transbord

No Negatividad: naturalmente las variables de decisión definidas inicialmente deberán adoptar valores mayores o iguales a cero.

A continuación se muestra un extracto de la implementación computacional del problema de transbordo haciendo uso de Solver de Excel. El valor óptimo es de $24.370.

solucion-optima-transbordo

Por otra parte las celdas en color amarillo corresponden a las variables de decisión (con color naranjo se identifican los parámetros), donde destaca que no se utiliza el centro de distribución sur. En cuanto al centro de distribución norte, éste se abastece de 1.620 unidades durante el mes de Julio (1.000 de la Planta 1 y 620 de la Planta 2), de los cuales envía 1.500 unidades a Santiago y las restantes 120 las almacena en inventario. De las 1.500 que dispone Santiago en el mes de Julio, envía 900 al Local 1 (Norte) y 600 al Local 2 (Sur) satisfaciendo la demanda. En cuanto al mes de Agosto, el centro de distribución norte recibe en total 2.500 unidades las cuales suma a las 120 en inventario que quedaron a fines de Julio, enviando todas ellas a Santiago. Luego de las 2.620 disponibles en Santiago en el mes de Agosto, envía 1.750 al Local 1 y 870 al Local 2, satisfaciendo la demanda de dichos destinos y minimizando el costo total de la logística de transporte.

¿Quieres tener el archivo Excel con la resolución en Solver del Problema de Transbordo en una Red Logística de Transporte Multiperíodo presentado en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Qué es la Investigación de Operaciones

La Investigación de Operaciones o Investigación Operativa (en inglés OROperations Research) es una disciplina que consiste en la aplicación de métodos analíticos avanzados con el propósito de apoyar el proceso de toma de decisiones, identificando los mejores cursos de acción posibles.

En este contexto la Investigación de Operaciones utiliza técnicas de modelamiento matemático, análisis estadístico y optimización matemática, con el objetivo de alcanzar soluciones óptimas o cercanas a ellas cuando se enfrentan problemas de decisión complejos. Se espera que las decisiones alcanzadas mediante el uso de un modelo de investigación operativa sean significativamente mejores en comparación a aquellas decisiones que se podrían tomar haciendo uso de la simple intuición o experiencia del tomador de decisiones. Lo anterior es particularmente cierto en aquellos problemas de naturaleza real complejos, que consideran cientos, incluso miles de variables de decisión y restricciones.

La Investigación de Operaciones se complementa con otras disciplinas como la Ingeniería Industrial y la Gestión de Operaciones. En términos estrictos un modelo de optimización considera una función objetivo en una o varias variables que se desea maximizar (por ejemplo el ingreso o beneficio asociado a un plan de producción) o por el contrario minimizar (por ejemplo los costos de una firma, el riesgo asociado a una decisión, la pérdida de un alternativa, etc). Los valores que pueden adoptar las variables de decisión usualmente están restringidos por restricciones que adoptan la forma de ecuaciones y/o inecuaciones que buscan representar las limitantes asociadas a la problemática.

El enfoque de la Investigación de Operaciones es el modelaje. Un modelo es una herramienta analítica que nos sirve para lograr una visión bien estructurada de la realidad. Así, el propósito del modelo es proporcionar un medio para analizar el comportamiento de las componentes de un sistema con el fin de optimizar su desempeño (identificar el mejor curso de acción posible).

Una visión esquemática del proceso asociado a la construcción de un modelo de optimización se presenta a continuación:

metodologia-investigacion-d

1. Definición del problema: Se debe definir el problema para el cual se busca proponer un curso de acción. ¿Es un problema relevante? ¿es posible tomar una buena decisión sin la necesidad de resolver un modelo de optimización? ¿cuáles son sus alcances? ¿cuáles son los factores que influyen en el desempeño del sistema?, etc. La calidad del modelo de optimización dependerá en gran parte de la asertividad en la definición del problema de decisión.

2. Construcción de un modelo: Un modelo de optimización considera necesariamente una abstracción o simplificación de la realidad. Por un lado se busca que el modelo sea representativo del problema real que se busca representar pero que al mismo tiempo sea simple de modo de favorecer su resolución haciendo uso de un algoritmo ad-hoc. Alcanzar este equilibrio no es trivial. Por ello ante un mismo problema puede existir más de un modelo de optimización que lo represente con distintos niveles de detalle y abstracción.

3. Solución del modelo: Una vez construido el modelo de optimización se deben identificar las alternativas de resolución para el mismo. Para ello se puede hacer uso de programas computacionales que utilizan algoritmos de resolución específicos dependiendo de las características del modelo. Por ejemplo, para resolver un problema de Programación Lineal (las variables de decisión se representan como funciones lineales tanto en la función objetivo como restricciones) se puede utilizar el Método Simplex.

4. Validación: Se verifica que la solución alcanzada cumpla con las condiciones (restricciones) impuestas al problema.

5. Implementación y control de la solución: Una vez verificada la solución se procede a su implementación. Cabe destacar que esto puede lugar a actualizaciones del modelo de optimización tanto en términos del modelo como el valor de los parámetros estimados. Por ejemplo, si el modelo de optimización corresponde a un Plan Maestro de la Producción (PMP) y se genera un cambio en el valor de la hora hombre de los trabajadores será necesario actualizar el valor del parámetro que representa dicho costo para posteriores instancias de resolución.

En la actualidad el uso de modelos de optimización es cada vez más frecuente en la toma de decisiones. Este mayor uso se explica, principalmente, por un mejor conocimiento de estas metodología en las diferentes disciplinas, la creciente complejidad de los problemas que se desea resolver, la mayor disponibilidad de software y el desarrollo de nuevos y mejores algoritmos de solución.

Las sub disciplinas más destacadas en la Investigación de Operaciones moderna son: