Elección y Construcción del Gráfico de Control apropiado en el Control Estadístico de Procesos (CEP)

Los gráficos de control son una de las principales herramientas del Control Estadístico de Procesos (CEP o su equivalente en inglés Statistical Process Control (SPC)). De forma previa a la construcción de un gráfico de control, se sugiere seguir de forma secuencial una serie de pasos de modo de poder analizar en detalle los procesos. En el contexto anterior a continuación detallamos algunos criterios para la elección y construcción del gráfico de control adecuado para su proceso:

1. Analizar la característica de calidad de la que se desea hacer el gráfico: es importante destacar que el control estadístico de los procesos sirve tanto para procesos productivos como para servicios, por lo que la característica de calidad puede ser el diámetro de la tapa de un frasco de vidrio, el tiempo que tardamos en resolver un reclamo de un cliente, el porcentaje de boletas erróneas o el número de visitas necesarias hasta poner en funcionamiento una determinada aplicación.

2. Elegir el tipo de gráfico de control apropiado: la primera decisión es cuándo utilizar gráficos de variables o de atributos. Un gráfico de variables se utiliza para controlar características medibles, en tanto que un gráfico de atributos se utiliza en una inspección del tipo pasa o no pasa. Al respecto el complemento SPC for Excel permite generar de forma rápida y sencilla gráficos de atributos y variables como se muestra en la siguiente imagen:

spc-for-excel

3. Elegir los estadísticos para la línea central del gráfico y la base para calcular los límites de control: normalmente se utiliza la media de los datos recogidos para la línea central. Los límites de control estadístico se obtienen (usualmente) sumando y restando tres veces una estimación de la desviación estándar al valor central. Por ejemplo, a continuación se muestra una Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos (gráfico de variables para el promedio muestral).

grafica-promedios-control-e

4. Elegir una muestra: el término muestra es el normalmente utilizado, si bien muestra puede significar un solo valor, y si es posible, es aconsejable utilizar muestras de más de un valor en los gráficos de control. Se deben seleccionar las muestras de tal forma que la probabilidad de un cambio en el proceso se minimice durante la toma de la muestra (por eso se debe utilizar una muestra pequeña), en tanto que la probabilidad de un cambio, si va a ocurrir, es máxima entre dos muestras consecutivas. Esto es el concepto de tomar subgrupos racionales. En consecuencia es mejor tomar pequeñas muestras periódicamente que una única muestra grande.

muestreo-estadistico-calida

5. Diseñar un sistema para recoger los datos: si buscamos que los gráficos de control sean una herramienta útil, la toma de datos debe ser simple y relativamente libre de error.

6. Calcular los límites de control y dar instrucciones adecuadas a todos los involucrados en el gráfico de control sobre su significado y la interpretación de sus resultados: examinar las condiciones de fuera de control y eliminar las causas especiales (asignables) de variación. Una vez que el proceso esté bajo control, fijar los límites y continuar analizando el proceso hasta que se produzca un cambio.

El siguiente diagrama esquemático muestra los criterios a considerar para seleccionar el gráfico de control adecuado:

eleccion-tipo-control-estad

Los beneficios más importantes al utilizar los gráficos de control y el control estadístico de los procesos:

  1. Los gráficos de control son una herramienta efectiva para entender la variabilidad de los procesos y ayudan a alcanzar el control estadístico. En este sentido entrega información confiable de cuando se debería ajustar el proceso y cuando no.

  2. Cuando un proceso está bajo control estadístico, su rendimiento será predecible. En consecuencia, tanto el productor como el cliente, serán conscientes de los niveles de calidad de los productos o servicios.

  3. Un proceso bajo control estadístico puede ser mejorado a través de la reducción de la variabilidad natural o aleatoria.

  4. Los gráficos de control proporcionan un lenguaje común para comunicar información sobre el rendimiento de los procesos.

  5. Los gráficos de control, al permitir diferenciar entre las causas de variación asignables y las aleatorias, proporcionan una buena indicación sobre si los problemas pueden resolverse de forma local, o requerirán de la intervención de la alta dirección de la empresa.

Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos

El Control Estadístico de Procesos (CEP) es una metodología que da la confianza estadística de que un componente está dentro de una tolerancia sin tener la necesidad de medir cada componente. Como su nombre lo sugiere es un control del proceso (no del producto) y es un indicador más que una solución. En este contexto la importancia del Control Estadístico de Procesos radica en los siguientes aspectos:

  1. Se utiliza como apoyo al proceso de Control de Gestión.
  2. Consiste en la aplicación de métodos estadísticos a la medición y análisis de la variación en cualquier proceso.
  3. Permite diagnosticar el estado del proceso: Se dice que el proceso está bajo control estadístico (estable) si no presenta señales de que existe alguna causa asignable de variación y en consecuencia representa un proceso predecible. Una causa asignable es detectable y posible de eliminar con una justificación económica.

Las principales herramientas del Control Estadístico de Procesos lo constituyen las cartas de control (de promedios y rangos), las cuales se aplican en el monitoreo de las características de calidad de un producto y detecta cuando el proceso esta fuera de control. A continuación presentaremos un ejemplo que permite la evaluación de si un proceso se encuentra bajo control estadístico mediante la elaboración e interpretación de las gráficas de control de promedios y rangos.

Gráfica de Promedios y Gráfica de Rangos

Una máquina automatizada a alta velocidad fabrica resistores para circuitos electrónicos. La máquina está programada para producir un lote muy numeroso de resistores de 1000 OHMS cada uno, siendo éste el valor ideal para cada resistor y admitiéndose una variación sobre dicho valor de ± 25 OHMS.

Con el fin de ajustar la máquina y crear una gráfica de control para utilizarla a lo largo de todo el proceso, se tomaron 15 muestras con cuatro resistores cada una. La lista completa de muestras y sus valores medidos es la siguiente:

tabla-datos-control-estadis

¿Se encuentran el proceso bajo control estadístico?. Grafique los datos en una gráfica de control de promedio (X) y de rango (R) con los limites de control. Para el cálculo del promedio muestral considere los resultados aproximados a un decimal. Comente e interprete los resultados.

En primer lugar necesitamos calcular los límites de control estadístico para las gráficas de promedio y rango. Para ello se deben considerar las siguientes fórmulas y parámetros:

formulas-limites-de-control
tabla-parametros-control-es

Con esta información procedemos a calcular el promedio y rango de cada una de las 15 muestras. Por ejemplo el promedio de la muestra 1 se obtiene de X1=(1010+991+985+986)/4=993 y el rango R1=1010-985=25 (la diferencia en magnitud de la mayor y menor observación de la muestra). Se replica el procedimiento para el resto de las muestras lo cual se facilita haciendo uso de una planilla Excel según se observa a continuación:

calculo-promedio-y-rango

Finalmente se obtienen los límites de control estadístico los cuales se resumen en la siguiente tabla:

calculo-limites-de-control-

A continuación se grafican los resultados de cada una de las muestras (celdas color amarillo de la planilla anterior) en contrastes con los límites de control.

grafica-promedios-control-e
grafica-rangos-control-esta

  • El proceso se encuentra bajo control estadístico. Tanto en la gráfica de promedios y rangos los resultados de las muestras están dentro de los límites de control. Recomendamos a nuestros usuarios revisar el artículo Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17.

  • En la gráfica de promedios se observa una dispersión aleatoria respecto a la media del proceso aun cuando llama la atención de la media de las muestras 4 y 5.

  • En la gráfica de rangos se observa un leve tendencia creciente a contar de la muestra 9. Si bien las observaciones se mantienen dentro de los límites de control, esta situación se debe tener bajo alerta dado que muestra un aumento en la variabilidad.