Formulación un modelo de Programación Entera para un Plan Maestro de la Producción (PMP)

La Planificación Agregada y el Plan Maestro de la Producción (PMP o MPS según sus siglas en inglés Master Production Schedule) son metodologías ampliamente utilizadas hoy en día en empresas de manufactura para planificar las necesidades de producción de una serie de productos, de modo de responder a un pronóstico de demanda a través de los recursos productivos que se disponen.

En este contexto, la evidencia empírica muestra que existen diversas estrategias que se pueden utilizar para enfrentar la demanda, cada una de las cuales se puede valorar en términos de costos pero también a través de una serie de criterios cualitativos que por su naturaleza son difíciles de estimar en una unidad monetaria.

A continuación se presenta un gráfico con el Pronóstico de Demanda de un producto para el cual propondremos un modelo de optimización que permita cumplir con dichos requerimientos, minimizando los costos asociados a la utilización de los recursos productivos:

pronostico-demanda-pmp

Se puede apreciar que la demanda presenta una estacionalidad marcada donde al inicio y final del año los valores son menores a la demanda de un mes promedio (7.817 unidades).

En contraste con lo anterior en los meses de Junio, Julio y Agosto se presenta un peak de demanda, superando en magnitud claramente lo que correspondería a la demanda de un mes promedio. Adicionalmente consideremos los siguientes antecedentes de operación:

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

La pregunta inmediata es: ¿Cómo responder a la demanda pronosticada durante el período de planificación al menor costo posible?. Algunas posibles respuestas son:

Fuerza Laboral Exacta: Esto es mediante contratación y despido de trabajadores para responder de forma exacta a las necesidades de cada mes. Con esta alternativa se busca evitar la acumulación de inventario.

Acumulación y Liquidación de Inventario: Producir en mayor volumen en los meses de menor demanda de modo de acumular inventario para enfrentar los requerimientos adicionales de los meses de mayor demanda. Si se considera adecuado se puede utilizar esta alternativa buscando no afectar el tamaño de la fuerza laboral.

Por cierto también se puede utilizar una estrategia mixta o híbrida que mezcle por ejemplo características de las 2 opciones presentadas anteriormente. Este enfoque generalmente es el que permite alcanzar menores costos.

Adicionalmente cabe destacar que en un Plan Maestro de la Producción (PMP) se podrían considerar otras alternativas o variables de ajuste no consideradas en este ejemplo como la utilización de trabajadores en tiempo extraordinario, la subcontratación parcial de la producción, la eventual postergación de demanda, entre otras opciones.

Luego, en relación a los antecedentes de operación previamente detallados, un modelo de Programación Entera para el Plan Maestro de la Producción es:

1. Variables de Decisión:

variables-de-decision-pmp

2. Función Objetivo:

funcion-objetivo-pmp

3. Restricciones:

Satisfacer la Demanda (Balance de Inventario): Donde Dt corresponde a la demanda pronosticada para el mes t (parámetros).

restriccion-demanda-pmp

Balance Mano de Obra: La cantidad de trabajadores en operación en cada período corresponde a los trabajadores disponibles al final del mes anterior, más los contratados y menos los despedidos en el mes en curso.

balance-trabajadores-pmp

Capacidad de Producción: La producción de cada mes se ve limitada por la disponibilidad de trabajadores y el rendimiento mensual (en unidades de producto) que cada uno de éstos tiene.

capacidad-produccion-pmp

No Negatividad e Integralidad: Todas las variables de decisión deben adoptar valores no negativos y adicionalmente ser enteras.

no-negatividad-e-integralid

El modelo anterior se puede implementar con Solver y What’sBest! obteniendo los siguientes resultados:

Implementación Computacional en Solver: Se alcanza una solución factible con valor en la función objetivo de US$1.468.700.

solucion-solver-plan-maestr

El detalle de la resolución la puedes revisar en el siguiente tutorial de nuestro canal de Youtube:

Implementación Computacional con What’sBest!: Se alcanza una solución factible con valor en la función objetivo de US$1.468.400, la cual es ligeramente inferior en costos a la solución obtenida con Solver.

solucion-whatsbest-plan-mae

La carga del modelo en What’sBest! y la obtención de los resultados anteriores se puede revisar en el siguiente tutorial de nuestro canal de Youtube:

[sociallocker]Problema PMP www.gestiondeoperaciones.net[/sociallocker]

Método de Descomposición aplicado para un Pronóstico de Demanda

El Método de Descomposición corresponde a una metodología para la Proyección de la Demanda que como el nombre lo sugiere «descompone» el comportamiento de una Serie de Tiempo en tendencia, estacionalidad y ciclo, relacionando dichos componentes a través de la siguiente fórmula (multiplicativa):

formula-metodo-descomposici

Donde:

  • S= Valor pronosticado
  • T= Factor de tendencia
  • C= Componente cíclico
  • Y= Componente estacional
  • μ= Variación no sistemática

A continuación aplicaremos el Método de Descomposición para el pronóstico de la demanda de un producto sobre el cual tenemos información histórica para un período de 4 años (48 meses).

datos-metodo-descomposicion

Paso 1: Se debe calcular el factor de estacionalidad, realizando un cuociente entre el valor pronosticado según el Promedio o Media Móvil Simple con n=12 y el valor real de la demanda. En la imagen a continuación se observa que el promedio móvil para Enero de 2010 corresponde al promedio simple de la demanda real desde Enero de 2009 a Diciembre de 2009. (Los resultados han sido aproximados a un decimal)

Paso-1-Metodo-Descomposicio

Paso 2: Se calcula el factor de estacionalidad promedio para cada período. Este procedimiento se facilita al trabajar con Tablas Dinámicas (Selecciona las columnas de los datos de la planilla según muestra la imagen a continuación, luego en el Menú de Excel ir a «Insertar» y en la esquina superior izquierda seleccionar Tabla Dinámica).

Paso-2-Metodo-Descomposicio

Al desplegarse el menú «Lista de campos de tabla dinámica» arrastramos el campo de Mes a Etiquetas de columnas y el campo Año a Etiquetas de fila. Por último arrastrar el campo (a/b)*100 a Valores seleccionando en la configuración de dicho campo «Promedio«.

Campos-Tabla-Dinamica

La Tabla Dinámica tiene la siguiente forma donde se obtiene el factor de estacionalidad promedio:

Paso-2-Tabla-Dinamica

Paso 3: Se ajusta cada factor promedio, multiplicándolo por el factor de estacionalidad K, calculado de:

formula-k

En el ejemplo: K=(12*100)/(1.235,8)=0,971 (aproximado). Notar que los valores de la fila Indice Estacionalidad corresponde a la ponderación del Factor de Estacionalidad Promedio por el parámetro K.

Indice-Estacionalidad-Ajust

Paso 4: Calcular la tendencia de la serie de tiempo ajustando los datos a una regresión lineal, donde la variable dependiente corresponde a la demanda (Y) y la variable independiente a los períodos (X).

Para este propósito se puede aplicar el procedimiento de forma muy sencilla en Excel a través de las siguientes alternativas:

1. Hacer un Gráfico de Línea con los valores de la demanda real como se muestra en la imagen a continuación:

Grafico-Linea-Regresion-Lin

Luego sobre el gráfico de línea con el mouse o teclado seleccionar con el botón derecho la opción «Agregar línea de tendencia». Por defecto se ofrece la alternativa de tendencia lineal (no modificar) y debemos seleccionar las siguientes opciones:

regresion-lineal-opciones

Una vez realizado lo anterior obtendremos el gráfico que muestra el ajuste de la regresión y su ecuación. En nuestro ejemplo la regresión es: Y=98,038*X+15.157.

Ajuste-Regresion-Lineal

2. En la pestaña de «Datos» de Excel en la esquina superior derecha observaremos la opción «Análisis de datos» la cual debemos seleccionar, ingresando en el «Rango Y de entrada» los valores en la columna de la demanda real y en «Rango X de entrada» los valores de los períodos.

Paso-4-Metodo-Descomposicio

Luego presionar «Aceptar«, luego de lo cual se generará una nueva hoja en la planilla de cálculo con los resultados de la Regresión Lineal: (hemos marcado con color amarillo los resultados más relevantes en la aplicación del método de descomposición que son por supuesto coherentes con los que se obtienen al desarrollar el procedimiento del gráfico de línea).

Regresion-Lineal

Paso 5: Se calcula el factor cíclico de la serie histórica a partir de la siguiente expresión:

formula-factor-ciclico

Por ejemplo para Enero de 2010 (dato 13) el Factor Cíclico es 0,973 (se obtiene dividiendo 15.994,4 en 98,038*13+15.157). En la imagen a continuación se muestra la fórmula en Excel que hemos utilizado considerando una aproximación de los resultados a 3 decimales.

Paso-5-Metodo-Descomposicio

Paso 6: Determinar el factor cíclico promedio para cada período. En este paso al igual que en el Paso 2 una Tabla Dinámica resulta de bastante ayuda:

Paso-6-Metodo-Descomposicio

Una vez completado el Paso 6 estamos en condiciones de realizar un pronóstico de demanda utilizando la fórmula presentada al inicio del artículo. Por ejemplo si queremos pronosticar la demanda de Enero de 2013 (período 49) el resultado sería el siguiente:

  • T(49) = 98,038*49+15157 = 19.960,862
  • C(Ene) = 0,966
  • Y(Ene) = 90,8/100
  • S(49) = 19.960,862 * (90,8/100) * 0,966 = 17.508,231

¿Te pareció interesante este artículo? ¿Desearías tener la planilla de cálculo Excel con los resultados y detalle de los procedimientos?

[sociallocker]https://www.dropbox.com/s/0wch166wbgki6pq/Plantilla%20M%C3%A9todo%20Descomposici%C3%B3n.xlsx?dl=0[/sociallocker]

Pronóstico de Demanda con Alisamiento Exponencial para distintos Alfa (α)

El método de pronóstico de Alisamiento o Suavizamiento Exponencial pertenece a la categoría de Series de Tiempo, es decir, aquellos métodos donde se utiliza información de la demanda histórica para poder pronosticar el futuro. Su nombre se debe a que cada incremento del pasado se reduce en (1 – α) por lo cual se considera válido que la importancia de los datos disminuye en la medida que son más antiguos.

Para poder generar un pronóstico a través del método de Alisamiento Exponencial necesitamos el pronóstico más reciente, la demanda que se presentó para ese período y una constante de suavizamiento α (alfa).

Alisamiento Exponencial

El valor del parámetro alfa es entre 0 y 1. En esta escala para valores de alfa relativamente pequeños se reducen las variaciones de corto plazo asociadas al pronostico lo cual es razonable cuando la demanda real tiene un comportamiento relativamente estable. Sin embargo, si la demanda presenta cambios significativos en el corto plazo nos interesará seguir éstos más de cerca y en ese caso debiéramos seleccionar una constante alfa más grande.

Ejemplo Suavizamiento Exponencial

A continuación presentaremos 3 pronósticos para valores de alfa de α=0,2, α=0,5 y α=0,8. Los resultados se han aproximado (arbitrariamente y por comodidad) al entero más cercano. Notar que en cada caso el primer pronostico es de 200 (igual a la demanda real de Enero). Esta selección es usual dado que para la aplicación del método se necesita un primer pronóstico (o punto de partida) y frecuentemente se selecciona el dato real del período anterior:

Pronóstico Alisamiento Exponencial

En la tabla se puede apreciar que el pronóstico para el mes de Marzo utilizando α=0,2 es de 206. Esto se obtiene como F(Marzo)=200+0,2(230-200)=206. Siguiendo un procedimiento similar se puede calcular el resto de los pronósticos.

¿Cómo decidir que constante de suavizamiento alfa resultó mejor?. Un primer acercamiento es graficar el pronóstico y comparar su comportamiento con la demanda real. El siguiente gráfico representa esta situación. Se puede observar que para α=0,8 se replica de forma más cercana el comportamiento de la demanda aún cuando se aprecia un rezago (situación característica de este método). Por el contrario, para α=0,2 la variación de corto plazo es menor y el pronóstico básicamente marca una leve tendencia creciente. Finalmente para α=0,5 se obtiene un pronóstico intermedio entre los 2 escenarios anteriores.

Gráfico Alisamiento Exponencial

En otro artículo discutimos como mediante el MAD y la Señal de Rastreo podemos simular y seleccionar una constante alfa en base a un criterio cuantitativo. Adicionalmente en la publicación Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple se muestra la aplicación del método de suavizamiento exponencial utilizando el software Crystal Ball.

Pronóstico de Demanda con Media Móvil Simple

El método de Media Móvil Simple (o Promedio Móvil Simple) es un procedimiento de cálculo sencillo que pertenece a la categoría de pronósticos de Series de Tiempo, es decir, que utiliza información histórica del desempeño de la variable que se desea pronosticar para poder generar un pronóstico de la misma a futuro. Es decir, se considera válida la premisa que el pasado es de utilidad para predecir el futuro.

El escenario ideal para la utilización del método de Media Móvil Simple es cuando la demanda real no presenta mayores variaciones de corto plazo, no presenta una tendencia marcada e idealmente no presenta estacionalidades.

En este contexto, por ejemplo, se podría esperar que muchos productos alimenticios presentan estas características (arroz, aceite, azúcar, etc) y por tanto su aplicación en principio puede resultar adecuada.

La función matemática que permite obtener un pronóstico utilizando Media Móvil Simple es:

Media Movil Simple

Donde Ft es la demanda pronosticada para el período t y At la demanda real para el período t. La constante o parámetro n determina el número de períodos a promediar.

Mientras mayor sea el valor de n el pronostico suele presentar menor variabilidad y aproximar una tendencia de la serie de tiempo. Por cierto, esto último no necesariamente es mejor y por tanto se pueden utilizar distintos valores de n para efectos de evaluación y luego comparar el desempeño.

Media Móvil Simple (Ejemplo)

En la tabla a continuación se muestra el procedimiento de pronóstico de demanda con Media Móvil Simple con n=3. Por ejemplo, el pronóstico de Abril se obtiene promediando los valores reales de Enero, Febrero y Marzo: F(Abril)=(200+230+260)/3=230. El pronóstico de Mayo se obtiene promediando los valores reales de Febrero, Marzo y Abril: F(Mayo)=(230+260+180)/3=223. Notar que los pronósticos no consideran decimales (decisión arbitraria).

Calculo Media Movil Simple

Para tener una primera aproximación a lo acertado del pronóstico se recomienda graficar los datos reales de demanda y los obtenidos con el pronóstico. De esta forma se obtiene un acercamiento sobre la magnitud de los errores del pronóstico y la naturaleza de éste, es decir, si se genera una sobre o sub estimación de la demanda real. Este análisis se puede complementar con el Cálculo del MAD y la Señal de Rastreo para el pronóstico generado.

grafico-media-movil-simple

Se puede observar que en 6 de los 9 pronósticos realizados se genera una subestimación de la demanda real lo cual nos da indicios que este método de pronóstico no es lo más adecuado en este caso. Dicho esto puede ser recomendable explorar con un método que considere el efecto de la tendencia de la serie, como por ejemplo, una Regresión Lineal Simple.

¿Quieres tener el archivo Excel con la resolución de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]