Cómo calcular la Capacidad y el Tiempo de Ciclo de un Proceso con una Carta Gantt

Una forma intuitiva de obtener el tiempo de ciclo de un proceso y luego su capacidad es a través de una Carta Gantt. En el siguiente artículo mostraremos cómo calcular dichos indicadores tomando como ejemplo un proceso sencillo que consta de 3 etapas secuenciales (A, B y C, respectivamente) cuyos tiempos de flujo se detallan en el diagrama. Es importante destacar que asumimos que existe la posibilidad de almacenar inventario en proceso (o WIP por sus siglas en inglés «work in progress») entre las actividades A y B y B y C, que se denota usualmente a través de un triangulo entre cada actividad.

diagrama-proceso-abc

Una Carta Gantt que representa la configuración y evolución del proceso descrito anteriormente corresponde a:

carta-gantt-proceso-abc

Para una mayor claridad se han considerado distintos colores para las unidades que pasan por el proceso. Por ejemplo, la primera unidad (color amarillo) requiere 5 minutos en la etapa A y luego pasa inmediatamente por 15 minutos adicionales (es decir hasta el minuto 20) a la etapa B, para finalmente terminar en la etapa C (10 minutos adicionales) al cabo de 30 minutos desde que se inició su procesamiento (es decir, el tiempo de flujo de la primera unidad es de 30 minutos). En cuanto a la segunda unidad (color azul), ésta comienza en la etapa A tan pronto termina la primera unidad (comienza en el minuto 5 y termina en el minuto 10), sin embargo, para que sea procesada en la etapa B requiere que dicha etapa haya completado previamente la primera unidad (lo que retrasa el inicio de la segunda unidad al minuto 20 en la etapa B y terminando por tanto en el minuto 35). Finalmente la segunda unidad pasa a la etapa C concluyendo su operación en el minuto 45 (se puede apreciar que el tiempo de flujo de la segunda unidad sería en este caso 40 minutos que corresponde al tiempo trascurrido desde que se inician las operaciones para la segunda unidad en la etapa A (minuto 5) hasta que se concluye la etapa C para dicha unidad (minuto 45).

Es importante observar, por ejemplo, que la segunda unidad debe esperar 10 minutos (en el inventario en proceso) para pasar de la etapa A a la etapa B. Adicionalmente se puede concluir que el tiempo mínimo que requiere una unidad en pasar por el sistema (etapas A, B y C) es de 30 minutos (tiempo de flujo).

Repitiendo el procedimiento anterior se concluye que el tiempo que transcurre entre la primera y segunda unidad es de 15 minutos, patrón que se repite entre los tiempos de termino de la segunda y tercera unidad, tercera y cuarta unidad (y así sucesivamente). En consecuencia el tiempo de ciclo (tiempo promedio para la producción de dos unidades consecutivas es de 15[min/u]. Luego la capacidad del proceso es el recíproco del tiempo de ciclo, es decir, 1/15[u/min] o equivalentemente 4[u/hora] (que se obtiene de multiplicar 1/15[u/min] por 60[min/hora]). La actividad «cuello de botella» en este caso sería la etapa B.

Notar sin embargo que en la primera hora de trabajo no se han completado 4 unidades (en particular se han terminado sólo 3 unidades) lo cual no contradice la definición de capacidad de un proceso, dado que 4[u/hora] es lo máximo que puede generar el proceso bajo un régimen estable de operación, es decir, cuando se reconoce que las unidades consecutivas terminan el proceso en un intervalo de tiempo fijo (que en el ejemplo corresponde a 15 minutos lo cual representa el tiempo de ciclo).

Cómo calcular el Instock y Fill Rate asociado a un Inventario

En la Gestión de Inventarios resulta como regla general tomar decisiones en un contexto de incertidumbre en el cual no se conoce por anticipado el valor o realización de la variable aleatoria que representa la demanda de un producto.

En este aspecto es importante detenerse un momento dado que según nuestra experiencia docente suele ser una fuente de confusión de los alumnos. Se puede asumir que en base a información histórica se puede construir una demanda empírica que represente razonablemente el comportamiento de la demanda de un producto o incluso buscar su representación a través de una función de probabilidad conocida o demanda teórica (por ejemplo distribución normal, distribución uniforme, distribución gamma y otras utilizadas frecuentemente para fines académicos) para la cual se deberá estimar los mejores valores de los parámetros respectivos (por ejemplo en el caso de seleccionar una distribución normal se deberá estimar los valores de la media µ y la desviación estándar σ).

Para este propósito se puede hacer uso de software estadístico como Easyfit. No obstante, independiente si trabajamos con una distribución empírica o distribución teórica que modele el comportamiento de la demanda, conocer con anticipación el valor que tomará ésta no es posible dado que esto corresponde a la realización de una variable aleatoria.

En el contexto anterior resulta necesario disponer de indicadores de gestión que permitan evaluar el desempeño de una política de mantenimiento de inventario que ayude a los tomadores de decisiones a tomar acciones correctivas de ser necesario.

Para ello presentaremos 2 indicadores frecuentemente utilizados en la actualidad, en particular en la industria de la venta al detalle o comercio minorista, conocida comúnmente como Retail.

Instock: Considerando una demanda aleatoria, y dado una cantidad de inventario Q decimos que su probabilidad de Instock es P[D<=Q].

Fill Rate: Es un indicador de servicio que representa el porcentaje de la demanda que se logra satisfacer. En fórmula:

formula-fill-rate-esperado

Ejemplo Instock y Fill Rate

La panadería Bredi es conocida por producir el mejor pan fresco de la ciudad, por eso tiene ventas sustancialmente altas. Los siguientes datos fueron recolectados durante el último año y para cada valor de k en la segunda columna se indican que porcentaje de días del año pasado la demanda fue exactamente k (baguettes):

tabla-distribucion-empirica

En base a la demanda esperada, el gerente de la panadería Bredi decide hornear 475 baguettes cada mañana (Q=475). ¿Cuál es el Instock y Fill Rate asociado a este tamaño de lote de producción?. (Es importante verificar que la suma de las probabilidades (días en que la demanda fue exactamente k unidades de producto) es un 100%).

Instock: P[D<=475]=25%+15%+10%+10%=60%, es decir, la probabilidad de que en un día cualquiera se puede satisfacer la demanda de forma íntegra es un 60%. Por ejemplo, si la demanda de un día es de 500 baguettes dado un tamaño de producción de 475 unidades se incurre en un quiebre de stock.

Fill Rate: Las ventas esperadas depende del tamaño de lote de producción (Q). Por ejemplo, si la realización de la variable aleatoria (demanda) resulta ser igual o superior a 475 baguettes, se venderán sólo lo que se produce (Q=475) y el remanente se considera como venta perdida.

fill-rate-demanda-empirica

En cuanto a la demanda esperada, ésta es independiente de Q por tanto corresponde simplemente a ponderar los distintos valores de k por la probabilidad de ocurrencia del escenario respectivo. En consecuencia en el ejemplo:

resultado-fill-rate

Lo anterior permite corroborar un resultado que se puede generalizar: Instock <= Fill Rate

Conclusiones: Naturalmente al aumentar el tamaño de Q se incrementa tanto el Instock como el Fill Rate, no obstante, esta decisión no necesariamente es la recomendable dado que aumenta la probabilidad de quedar con stock al final del día (el cual en el ejemplo podría no tener uso alternativo en caso que se decida botar el pan que sobre o podría venderse como pan frío al día siguiente obteniendo usualmente una fracción del costo de fabricación).

Este tipo de escenarios es al que usualmente los tomadores de decisiones se ven enfrentado en problemas de ciclo de vida corto (Modelo Newsvendor) ante lo cual se necesita disponer de estimaciones adicionales.

Estrategia de Inventario en el Plan Maestro de la Producción (PMP)

Una estrategia pura para desarrollar un Plan Maestro de la Producción (PMP) es la acumulación de inventarios cuando la capacidad de producción excede el Pronóstico de Demanda, para luego desacumular inventario cuando los requerimientos son mayores o incluso cuando la demanda supera la capacidad de producción.

Para presentar una aplicación de esta estrategia consideraremos los antecedentes de operación descritos en el artículo Formulación y Resolución de un modelo de Programación Entera para un Plan Maestro de la Producción (PMP).

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

Luego de aplicar la estrategia de acumulación y desacumulación de inventario se obtiene la siguiente alternativa factible con costo total de US$1.988.200.

estrategia-inventario-plan-

Cabe destacar que si bien esta estrategia evita la contratación y despido de trabajadores, de todos modos es necesario contratar 66 trabajadores en el mes de Enero. Este número no es arbitrario: corresponde a la mínima cantidad de trabajadores que permite mediante el inventario enfrentar los requerimientos de demanda durante el período de planificación.

Por ejemplo, si se contrata en Enero más de 66 trabajadores se alcanzaría una opción factible pero no en el mínimo posible de trabajadores. Si se contrata menos de 66 trabajadores no se alcanza un plan factible, lo que obligaría a la contratación de trabajadores en un mes posterior a Enero (lo cual determinaría una estrategia mixta).

Algunas conclusiones que se pueden obtener de la aplicación de este enfoque:

  • Tiene la ventaja práctica de poder enfrentar de mejor forma una demanda real mayor a la pronosticada cuando se dispone de inventario.
  • El costo adicional de esta opción es de US$519.800 en comparación al valor óptimo alcanzado en la resolución del modelo de optimización para los mismos datos. Lo anterior corrobora la evidencia empírica de que las estrategias puras suelen ser más costosas que los enfoques mixtos.
  • Evita una alta rotación de personal lo cual afecta la moral de los trabajadores y la productividad de los mismos.

Formulación un modelo de Programación Entera para un Plan Maestro de la Producción (PMP)

La Planificación Agregada y el Plan Maestro de la Producción (PMP o MPS según sus siglas en inglés Master Production Schedule) son metodologías ampliamente utilizadas hoy en día en empresas de manufactura para planificar las necesidades de producción de una serie de productos, de modo de responder a un pronóstico de demanda a través de los recursos productivos que se disponen.

En este contexto, la evidencia empírica muestra que existen diversas estrategias que se pueden utilizar para enfrentar la demanda, cada una de las cuales se puede valorar en términos de costos pero también a través de una serie de criterios cualitativos que por su naturaleza son difíciles de estimar en una unidad monetaria.

A continuación se presenta un gráfico con el Pronóstico de Demanda de un producto para el cual propondremos un modelo de optimización que permita cumplir con dichos requerimientos, minimizando los costos asociados a la utilización de los recursos productivos:

pronostico-demanda-pmp

Se puede apreciar que la demanda presenta una estacionalidad marcada donde al inicio y final del año los valores son menores a la demanda de un mes promedio (7.817 unidades).

En contraste con lo anterior en los meses de Junio, Julio y Agosto se presenta un peak de demanda, superando en magnitud claramente lo que correspondería a la demanda de un mes promedio. Adicionalmente consideremos los siguientes antecedentes de operación:

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

La pregunta inmediata es: ¿Cómo responder a la demanda pronosticada durante el período de planificación al menor costo posible?. Algunas posibles respuestas son:

Fuerza Laboral Exacta: Esto es mediante contratación y despido de trabajadores para responder de forma exacta a las necesidades de cada mes. Con esta alternativa se busca evitar la acumulación de inventario.

Acumulación y Liquidación de Inventario: Producir en mayor volumen en los meses de menor demanda de modo de acumular inventario para enfrentar los requerimientos adicionales de los meses de mayor demanda. Si se considera adecuado se puede utilizar esta alternativa buscando no afectar el tamaño de la fuerza laboral.

Por cierto también se puede utilizar una estrategia mixta o híbrida que mezcle por ejemplo características de las 2 opciones presentadas anteriormente. Este enfoque generalmente es el que permite alcanzar menores costos.

Adicionalmente cabe destacar que en un Plan Maestro de la Producción (PMP) se podrían considerar otras alternativas o variables de ajuste no consideradas en este ejemplo como la utilización de trabajadores en tiempo extraordinario, la subcontratación parcial de la producción, la eventual postergación de demanda, entre otras opciones.

Luego, en relación a los antecedentes de operación previamente detallados, un modelo de Programación Entera para el Plan Maestro de la Producción es:

1. Variables de Decisión:

variables-de-decision-pmp

2. Función Objetivo:

funcion-objetivo-pmp

3. Restricciones:

Satisfacer la Demanda (Balance de Inventario): Donde Dt corresponde a la demanda pronosticada para el mes t (parámetros).

restriccion-demanda-pmp

Balance Mano de Obra: La cantidad de trabajadores en operación en cada período corresponde a los trabajadores disponibles al final del mes anterior, más los contratados y menos los despedidos en el mes en curso.

balance-trabajadores-pmp

Capacidad de Producción: La producción de cada mes se ve limitada por la disponibilidad de trabajadores y el rendimiento mensual (en unidades de producto) que cada uno de éstos tiene.

capacidad-produccion-pmp

No Negatividad e Integralidad: Todas las variables de decisión deben adoptar valores no negativos y adicionalmente ser enteras.

no-negatividad-e-integralid

El modelo anterior se puede implementar con Solver y What’sBest! obteniendo los siguientes resultados:

Implementación Computacional en Solver: Se alcanza una solución factible con valor en la función objetivo de US$1.468.700.

solucion-solver-plan-maestr

El detalle de la resolución la puedes revisar en el siguiente tutorial de nuestro canal de Youtube:

Implementación Computacional con What’sBest!: Se alcanza una solución factible con valor en la función objetivo de US$1.468.400, la cual es ligeramente inferior en costos a la solución obtenida con Solver.

solucion-whatsbest-plan-mae

La carga del modelo en What’sBest! y la obtención de los resultados anteriores se puede revisar en el siguiente tutorial de nuestro canal de Youtube:

[sociallocker]Problema PMP www.gestiondeoperaciones.net[/sociallocker]

Problema del Vendedor de Periódicos (Newsvendor Problem)

El Problema del Vendedor de Periódicos (también conocido como Newsvendor Problem) es una forma sencilla de ilustrar una categoría de problemas con demanda incierta (estocástica) pero con distribución de probabilidad conocida, donde se debe determinar el tamaño de pedido o lote económico que minimice una función de costos esperados.

Este problema es de un sólo período debido a que los periódicos que no se logran vender en un día no se pueden vender al día siguiente a un valor de mercado y por tanto cada exceso de inventario (tamaño de pedido superior a la demanda) tiene un costo monetario asociado.

Sin embargo, en algunas ocasiones se asume que si se puede vender el inventario en exceso pero a un precio que usualmente es significativamente menor que el costo de adquisición. Este sería, por ejemplo, el caso de una panadería que vende el pan que le sobra de un día al día siguiente a un precio descontado.

En el mismo contexto, realizar un pedido insuficiente para enfrentar la demanda tiene un costo de oportunidad asociado, que en el mejor de los casos se puede estimar como el margen no logrado por quiebre de stock, pero que en la práctica puede incluso provocar la pérdida del cliente (costo muy complejo de estimar).

Consideremos los siguientes parámetros del Modelo Newsvendor:

  • Costo unitario c.
  • Valor de consignación h (items no vendidos).
  • Costo de quiebre de stock (stock-out) p (costo de imagen).
  • Demanda desconocida con distribución de probabilidad conocida F(x).

La función que permite minimizar el costo esperado asociado al inventario es:

costo-esperado

Donde la solución óptima esta dada por:

solucion-newsvendor

Ejemplo Problema del Vendedor de Diarios (Newsvendor Problem)

Un vendedor de periódicos elige todas las noches que cantidad de periódico él va a pedir al editor. El costo unitario es $1.5 pero él puede devolver al editor periódicos no vendidos y recibir a cambio $0.9. Cada cliente que llega a su tienda y sale sin periódico tiene un costo de $2.5 para el vendedor.  Suponiendo que la demanda por periódicos es uniforme en el intervalo [50,150], ¿cuántos periódicos el vendedor debe pedir diariamente al editor?.

Primero debemos determinar cuáles son los parámetros del modelo: c=$1.5, h=$0.9, p=$2.5 y F(x)~U[50,150]. Luego evaluamos en F(y*) para obtener el tamaño de pedido que minimiza la función de costo esperado:

resultado-newsvendor

La cantidad de periódicos que debe pedir el vendedor es 112 unidades. Notar que si bien en el denominador de la fórmula se considera h con signo positivo, en el ejemplo dicho valor corresponde a un ingreso (lo que el vendedor puede rescatar o recuperar por cada unidad que no logra vender. Esto se conoce alternativamente como salvage value) por tanto se evalúa con signo negativo.

Finalmente al evaluar el tamaño óptimo de pedido en la función de costo esperado se obtiene:

costo-esperado-sol

Donde μ es la media de la variable aleatoria que representa el comportamiento de la demanda.

En el ejemplo la media de una distribución uniforme entre [50,150] es μ=(50+150)/2=100. Finalmente al desarrollar la expresión se obtiene C(112)=$168,752.

Te recomendamos evaluar otro tamaño de pedido (por ejemplo y=100 o y=140) en la función de costos esperado y verificar que el costo que se alcanza es mayor a C(112)=$168,752.

Finalmente: ¿Cuál es la probabilidad de satisfacer la demanda para el vendedor de periódicos en un día cualquiera?.

Si compra y=112 periódicos la probabilidad de Instock es P[D<=112]=(112-50)/(150-50)=62%. Esto implica que la probabilidad de incurrir en un quiebre de stock para el tamaño de pedido que minimiza la función de costos esperados es de un 38% (100%-62%).