Comparación de un Servicio General y Específico para la Atención de Clientes (Teoría de Colas)

En los sistemas de atención de público se suelen encontrar distintos esquemas o configuraciones en las que se organiza la espera de los clientes antes de ser atendidos. Se pueden observar casos donde los clientes se ordenan en una fila para ser atendidos por un servidor, otros donde los clientes se ordenan en una fila común y luego son atendidos por un servidor en la medida que este disponible (esquema frecuente en las cajas rápidas en los supermercados). En este contexto el siguiente artículo evaluaremos un sistema de atención general y uno específico, comparando desde un punto de vista cuantitativo el desempeño de cada caso a través de la simulación del comportamiento de la Línea de Espera.

Un banco pequeño en un centro comercial tiene dos cajeros. Uno maneja al público general y uno maneja a los clientes regulares. Cada tipo de clientes llega con una media de 20 por hora (para una proporción de la llegada total de 40 clientes por hora). El tiempo de servicio para ambos cajeros promedia 2 minutos (sigue una distribución exponencial, es decir, se verifica el cumplimiento de la Propiedad de Falta de Memoria o Amnesia de la Distribución Exponencial). El gerente del banco está considerando cambiar el orden de atención para permitir que cada cajero pueda manejar ambos tipos de clientes. Debido a que los cajeros tendrían que manejar ambos tipos de trabajos, sus eficiencias disminuirían a un tiempo de servicio de 2,2 minutos por cliente. ¿Se debe cambiar al nuevo esquema de atención?.

Servicio General y Específico para la Atención de Clientes

El servicio específico implica que cada cajero atiende de forma exclusiva un tipo de clientes sin existir colaboración entre los mismos. Una representación esquemática de dicho escenario se muestra a continuación:

servicio-especifico-teoria-

En el artículo Simulación de una Línea de Espera M/M/1 (Teoría de Colas) en Excel se detalla el procedimiento para obtener los indicadores de desempeño de una línea de espera con un servidor, donde el tiempo entre llegadas de los clientes se distribuye exponencial, al igual que los tiempos de servicios. En el ejemplo la atención para cada tipo de clientes muestra los siguientes resultados:

servicio-general-mm1

El número esperado de clientes en el sistema Ls es de 2 clientes (en este caso la fila y atención para cada tipo de cliente constituye un sistema), el número esperado de clientes en la fila Lq es de 1,333, el tiempo promedio que un cliente esta en el sistema Ws es 0,1 horas, es decir, 6 minutos. Finalmente el tiempo que un cliente esta en la fila Wq es de 0,06667 horas (4 minutos).

En el caso de un servicio general, en donde existe colaboración entre los servidores, la capacidad de cada uno de ellos baja a µ=60/2,2[clientes/hora].

servidor-general-teoria-de-

Los indicadores de desempeño son: Ls=3,17307 (considerando los 2 tipos de clientes, es decir, en promedio se espera tener menos clientes en el sistema que el caso del servicio específico donde en total se esperan, en promedio, 4 clientes en el sistema); el tiempo promedio que un cliente esta en el sistema Ws es 0,07933 horas (aprox 4,76 minutos); el número esperado de clientes en la fila Lq es de 1,7064 y el tiempo que en promedio un cliente esta en la fila Wq es de 0,04266 horas (2,56 minutos).

mm1-servicio-general

Se concluye que si bien en nuestro ejemplo la capacidad de cada uno de los servidores baja al atender los 2 tipos de clientes, esto se ve compensado por el efecto de colaboración que se genera entre los mismos, lo que permite bajar el tiempo que en promedio un cliente esta en el sistema y en la fila. Estos aspectos claramente son valorados desde la perspectiva de los clientes y deberían ser tomados en cuenta al momento de decidir si se cambia el esquema original de atención de clientes.

¿Quieres tener el archivo Excel con la planilla de Simulación de una Línea de Espera utilizada en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Simulación de una Línea de Espera M/M/1 (Teoría de Colas) en Excel

Un sistema de espera M/M/1 es aquel que considera un servidor, con tiempos exponenciales de servicio y entre llegadas de clientes. La implicancia que los tiempos de servicio se distribuyan exponencial es que existe una preponderancia de tiempos de servicio menores al promedio combinados con algunos pocos tiempos extensos. Un ejemplo de ello es lo que sucede en las cajas de los bancos donde la mayoría de las transacciones requieren poco tiempo de proceso por parte del cajero, no obstante algunas transacciones más complejas consumen bastante tiempo. Por otra parte afirmar que los tiempos entre llegadas se distribuyen exponencial implica una preponderancia de tiempos entre llegadas menores que el promedio en combinación con algunos tiempos más extensos. Lo anterior tiene relación con la aleatoriedad del proceso de llegada de clientes que permite establecer la Propiedad de Falta de Memoria o Amnesia de la Distribución Exponencial y con los conceptos presentados en el artículo Qué son las Líneas de Espera (Teoría de Colas), donde queda en evidencia que la formación de las colas o filas esta asociada a la variabilidad del sistema.

En este contexto consideremos la siguiente notación, donde valores usuales para A y B son M (distribución exponencial) y G (distribución general).

notacion-de-kendall

El siguiente ejemplo disponible en el artículo Qué es la Ley de Little y su aplicación en el análisis de Líneas de Espera, nos permitirá ilustrar la simulación en Excel del comportamiento de un sistema de espera M/M/1.

Simulación de una Línea de Espera M/M/1

Ejemplo: Un pequeño banco está considerando abrir un servicio para que los clientes paguen desde su automóvil. Se estima que los clientes llegarán a una tasa promedio de 15 por hora (λ=15). El cajero que trabajará en la ventanilla puede atender a los clientes a un ritmo promedio de uno cada tres minutos (es decir, la capacidad promedio del servidor es de µ=20). Suponga que el patrón de llegadas es Poisson y el patrón de servicios es Exponencial.

Al hacer uso de la Planilla de Fórmulas de Sistema de Espera, se alcanzan los resultados que se resumen en la imagen a continuación.

salida-planilla-linea-de-es

Con esto la utilización promedio del servidor es de un 75%, el número esperado de clientes en el sistema Ls es 3, el número esperado de clientes en la fila Lq son 2,5, el tiempo promedio que un cliente permanece en el sistema Ws (espera más atención) son 0,2 horas (0 12 minutos) y el tiempo promedio que un cliente permanece en la fila Wq (esperando su atención) es de 0,15 horas (o 9 minutos).

Otra alternativa es simular el comportamiento de la línea de espera con configuración M/M/1 haciendo uso de Excel. Para ello ingresamos en la planilla Queueing_Simulator el número de servidores (1), la distribución para el tiempo entre llegadas (exponencial con media de 4 minutos, esto es, si llegan en promedio 15 clientes por hora, entonces en promedio llega un cliente cada 1/15 de hora o equivalentemente cada 4 minutos) y una distribución para el tiempo de servicio también exponencial con media de 3 minutos. Finalmente ingresamos el número de llegadas que se desea simular (arbitrariamente se ha seleccionado 100.000 llegadas para evaluar un comportamiento del sistema en el largo plazo) y luego Run Simulation.

simulacion-mm1-excel

Se puede apreciar que los resultados obtenidos en la columna F son (aproximadamente) similares a los obtenidos utilizando los resultados que establece la Ley de Little. Por ejemplo, el número esperado de clientes en el sistema L es 3,0157; el número esperado de clientes en la fila Lq es 2,2665; el tiempo esperado que un cliente permanece en el sistema W son 12,0612 minutos y así sucesivamente.

Importante: Los resultados mostrados anteriormente corresponden a aquellos obtenidos con una simulación tipo. Si una vez alcanzados los resultados presionamos nuevamente Run Simulation obtendremos cambios en los resultados los cuales de todos modos deberían aproximar los resultados de la Ley de Little bajo el supuesto de considerar un número significativo de llegadas a simular.

¿Quieres tener el archivo Excel con la Simulación de una Línea de Espera M/M/1 utilizada en este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Análisis Cuantitativo de un Proceso Productivo y su relación con la Ley de Little

Existe una estrecha relación teórica y práctica entre el análisis cuantitativo de un Proceso Productivo (donde se calculan frecuentemente indicadores de gestión como capacidad, tiempo de ciclo, tiempo de flujo, utilización, entre otros) y las Líneas de Espera.

Lo anterior generalmente suele ser materia de estudios de cursos de Gestión de Operaciones e Investigación Operativa. En el siguiente artículo ilustraremos dicha relación a través de un ejemplo sencillo que fue compartido por uno de nuestros lectores.

En el taller ABC se dedican a la reparar carrocerías de autos, en particular desabollan y pintan. En la entrada del taller atienden las recepcionistas Mónica y Silvana quienes reciben a los clientes y revisan si viene con los papeles apropiados (documentos del auto, ven si el trabajo se puede hacer en el taller, presupuesto valido, etc).  Si todo se encuentra en orden se genera una ficha para el automóvil y es ingresado al taller. Si no Mónica o Silvana, según corresponda, le informan al dueño del vehículo qué debe hacer, ya sea ir a otro taller o volver otro día.

En la entrada del taller esperando para ser atendidos hay, en promedio, 1 automóvil esperando además de los que están revisando Mónica y Silvana.

(a) Si los autos llegan al taller a una tasa promedio de 2 autos por hora, ¿cuánto tiempo en promedio espera un cliente para saber si su auto será ingresado al taller o no?

Para responder lo anterior aplicamos la ecuación de la Ley de Little donde nos interesa calcular el tiempo que en promedio permanece un cliente en el sistema (Ws), dado que recién luego de la entrevista con una recepcionista el cliente sabrá si su auto se ingresará al taller o no.

ws-ejemplo-proceso

Continuando con el análisis consideraremos la siguiente información adicional: En el interior del taller el trabajo en los automóviles se divide en 4 etapas:

  • Desabolladura, en esta etapa hay un sólo trabajador (A).
  • Pintado, en esta etapa de pintado hay 4 trabajadores (B1, B2, B3, B4).
  • Secado, no necesita trabajadores, puede asumir que hay tantos espacio como autos se necesiten secar (D).
  • Entrega, en esta etapa hay un sólo trabajador (E).

En la siguiente figura puede ver como se organiza el taller y el tiempo promedio que toma cada tarea:

proceso-con-actividades-en-

(b) Encuentre el cuello de botella del proceso, la capacidad de cada estación y la capacidad total.

La capacidad de cada estación de trabajo se detalla a continuación. Notar que los trabajadores de la etapa de pintado trabajan en paralelo, por tanto se suman sus respectivas capacidades. Adicionalmente como la etapa D (secado) no tiene restricciones en cuanto al número de vehículos que simultáneamente pueden pasar por dicha actividad, se considera en consecuencia que su capacidad es infinita.

capacidad-proceso-taller-pr

El cuello de botella son los trabajadores de las actividades de Pintado, siendo la capacidad del taller de 19/12[autos/hora].

(c) Suponga que, de los 2 autos por hora que en promedio llegan al taller, entran a desabollarse efectivamente el 70%. ¿Cuál  es la utilización de las etapas A y E?

La tasa de entrada (λ) efectiva de autos al taller es λ=0,7*2[autos/hora]=1,4[autos/hora] y representa la demanda del sistema. Por tanto la utilización de los trabajadores de las etapas A y E son:

calculo-utilizacion-trabaja

Claramente la tasa de llegada tiene un impacto directo en la utilización de los trabajadores, más aun en un contexto de una empresa de servicios como el descrito en el ejemplo que hemos propuesto en este artículo, donde el taller responde a la demanda de los clientes y por supuesto no puede anticiparse a la demanda (como el enfoque de los procesos productivos de fabricación contra stock conocidos comúnmente como «make to stock»).

Qué es la Ley de Little y su aplicación en Líneas de Espera

La Teoría de Colas o Líneas de Espera hace uso de modelos matemáticos para encontrar un balance adecuado entre el nivel de servicio ofrecido a los clientes y los costos asociados a su prestación. El objetivo es reducir el impacto desfavorable de la espera de los clientes o usuarios de un sistema a niveles tolerables.

Notar que la tolerancia de un cliente a la espera depende de muchos factores que resulta imposible enumerar de forma exhaustiva, incluso en un análisis introspectivo se puede apreciar que nuestra propia tolerancia no es rígida y se ve afectada por condiciones del ambiente, congestión del sistema, temperatura, urgencia, etc.

Una descripción general de la estructura de los modelos que representan lo que sucede en un proceso o línea de espera es la siguiente:

  1. Clientes con una fuente de entrada (población finita o infinita). Una población finita se refiere a un conjunto limitado de clientes que usarán el servicio y en ocasiones formarán una línea. Por el contrario una población infinita es lo bastante grande en relación con el sistema de servicio.

  2. Clientes entran al sistema y se unen a una cola (tiempo entre llegada de clientes). Por lo general se supone que el tiempo entre llegada de clientes se distribuye de forma exponencial. No obstante se puede corroborar lo anterior a través de un ajuste de curva para lo cual se puede utilizar software estadístico como Easyfit.

  3. Se proporciona el servicio (tiempos de servicio) por un servidor (uno y/o múltiples servidores) a un miembro de la cola, según una disciplina de servicio (disciplina de la cola). La disciplina de la cola más común es FIFO, es decir, se atiende por orden de llegada.

  4. El cliente sale del sistema.

En este contexto uno de los escenarios más sencillo para el análisis es aquel donde existe una fase de servicio, un único servidor, con una fuente de entrada infinita y una longitud permisible de la fila ilimitada.

linea-de-espera-un-servidor

Ley de Little

Un importante resultado matemático es el demostrado por John Little en 1961, el cual relaciona las siguientes variables:

L : Número promedio de clientes en un sistema
W : Tiempo promedio de espera en un sistema
λ : Número promedio de clientes que llegan al sistema por unidad de tiempo

Luego la Ley de Little establece que el número promedio de clientes en un sistema (L) es igual a la tasa promedio de llegada de los clientes al sistema (λ) por el tiempo promedio que un cliente esta en el sistema (W).

formula-ley-de-little

La fórmula es válida para sistemas y para subsistemas, es decir:

formula-ley-de-little-esper

Donde Lq es el número promedio de clientes que esperan en la fila y Wq el tiempo promedio que un cliente espera en la fila. Adicionalmente µ representa el ritmo del servicio o capacidad del sistema.

Ejemplo Ley de Little

Un pequeño banco está considerando abrir un servicio para que los clientes paguen desde su automóvil. Se estima que los clientes llegarán a una tasa promedio de 15 por hora. El cajero que trabajará en la ventanilla puede atender a los clientes a un ritmo promedio de uno cada tres minutos. Suponiendo que el patrón de llegadas es Poisson y el patrón de servicios es Exponencial, encuentre:

La utilización promedio del cajero:

utilizacion-cajero

El número promedio de clientes en la línea de espera es:

Lq-ley-de-little

El número promedio de clientes en el sistema:

Ls-ley-de-little

El tiempo promedio de la espera en la fila:

Wq-ley-de-little

El tiempo promedio de espera en el sistema:

Ws-ley-de-little

En el libro de Investigación de Operaciones de Hamdy Taha se puede encontrar un archivo en formato Excel que permite automatizar este tipo de cálculos y que facilita el análisis de las líneas de espera. El archivo lo puedes descargar aquí: Formulas Sistemas de Espera.

Para la utilización de la planilla se deben completar los datos de entrada (Input Data) y se obtienen automáticamente los resultados que son consistentes con lo detallado anteriormente.

salida-planilla-linea-de-es

El ejemplo que hemos presentado ha sido obtenido del Libro de Administración de Operaciones duodécima edición de los autores Chase, Jacobs y Aquilano el cual puede ser adquirido a través del siguiente enlace: