Problema de Planificación Financiera en Programación Lineal resuelto con Solver

El siguiente artículo trata de un problema de planificación financiera el cual se aborda a través de la Programación Lineal y se resuelve computacionalmente haciendo uso del complemento Solver de Excel. En este contexto se presenta un problema de inversión en distintos instrumentos financieros en los cuales se planifica invertir al inicio de cada uno de los próximos 10 años (horizonte de planificación), considerando los siguientes montos disponibles al comienzo de cada año (independiente de los retornos obtenidos producto de las mismas inversiones en años anteriores).

presupuestos-problema-de-in
Los instrumentos disponibles son:

  • Depósito a plazo (anuales) con un retorno de 4,5% anual.
  • Bono a 6 años plazo con retorno de 4,9% anual.
  • Bono a 9 años plazo con retorno de 5,2% anual.

Se busca formular un modelo de optimización que posea los mayores retornos al término del décimo año (o inicio del año 11). Para ello se propone el siguiente problema de Programación Lineal:

Problema de Planificación Financiera

Variables de Decisión: Se establecen las posibilidades de inversión en los distintos instrumentos financieros. Notar que dado el período de maduración de los mismos se define la factibilidad de invertir en ellos en cada uno de los años. Por ejemplo, como el depósito anual tiene una maduración de un año se puede invertir en él en cada uno de los años del período de planificación. No así, por ejemplo, con el Bono a 9 años plazo el cual se puede invertir sólo al inicio del año 1 y 2.

variables-problema-de-inver

Función Objetivo: Se desea maximizar el dinero obtenido al finalizar el período de planificación correspondiente al término del año 10 (o inicio del año 11).

funcion-objetivo-planificac

Restricciones: Para cada año se limita las posibilidades de inversión según los instrumentos disponibles, el presupuesto del período y el retorno de los instrumentos que ya maduraron. Por ejemplo, en el año 1 se puede invertir en cada una de las 3 alternativas respetando el presupuesto de MM$20. En el año 2 nuevamente se puede invertir en las 3 alternativas y el presupuesto disponible corresponderá a los MM$20 de dicho período (según se detalla en la tabla al inicio) y eventualmente se podrá hacer uso del retorno de la inversión del depósito anual realizado en el año 1. Si, por ejemplo, se invierte los MM$20 en el depósito anual a inicio del año 1, entonces el presupuesto disponible para el año 2 será: 20+1,045(20)=MM$40,9.

restricciones-planificacion

A continuación se presenta un extracto de los resultados que provee la implementación computacional del modelo anterior haciendo uso de Solver. Las celdas color amarillo corresponde a la solución óptima, alcanzando un valor óptimo de MM$402,64.

solucion-optima-planificaci

Es interesante analizar la estructura de la solución óptima alcanzada. En el año 1 y 2 se invierte la totalidad del presupuesto en el Bono a 9 años plazo; en los años 3, 4 y 5 se invierte de forma exclusiva en los bonos a 6 años plazo; finalmente del año 5 al año 10 se invierte en el depósito anual.

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre “Descarga el Archivo” se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4694″]

Qué es la Investigación de Operaciones

La Investigación de Operaciones o Investigación Operativa (en inglés OROperations Research) es una disciplina que consiste en la aplicación de métodos analíticos avanzados con el propósito de apoyar el proceso de toma de decisiones, identificando los mejores cursos de acción posibles.

En este contexto la Investigación de Operaciones utiliza técnicas de modelamiento matemático, análisis estadístico y optimización matemática, con el objetivo de alcanzar soluciones óptimas o cercanas a ellas cuando se enfrentan problemas de decisión complejos. Se espera que las decisiones alcanzadas mediante el uso de un modelo de investigación operativa sean significativamente mejores en comparación a aquellas decisiones que se podrían tomar haciendo uso de la simple intuición o experiencia del tomador de decisiones. Lo anterior es particularmente cierto en aquellos problemas de naturaleza real complejos, que consideran cientos, incluso miles de variables de decisión y restricciones.

La Investigación de Operaciones se complementa con otras disciplinas como la Ingeniería Industrial y la Gestión de Operaciones. En términos estrictos un modelo de optimización considera una función objetivo en una o varias variables que se desea maximizar (por ejemplo el ingreso o beneficio asociado a un plan de producción) o por el contrario minimizar (por ejemplo los costos de una firma, el riesgo asociado a una decisión, la pérdida de un alternativa, etc). Los valores que pueden adoptar las variables de decisión usualmente están restringidos por restricciones que adoptan la forma de ecuaciones y/o inecuaciones que buscan representar las limitantes asociadas a la problemática.

El enfoque de la Investigación de Operaciones es el modelaje. Un modelo es una herramienta analítica que nos sirve para lograr una visión bien estructurada de la realidad. Así, el propósito del modelo es proporcionar un medio para analizar el comportamiento de las componentes de un sistema con el fin de optimizar su desempeño (identificar el mejor curso de acción posible).

Una visión esquemática del proceso asociado a la construcción de un modelo de optimización se presenta a continuación:

metodologia-investigacion-d

1. Definición del problema: Se debe definir el problema para el cual se busca proponer un curso de acción. ¿Es un problema relevante? ¿es posible tomar una buena decisión sin la necesidad de resolver un modelo de optimización? ¿cuáles son sus alcances? ¿cuáles son los factores que influyen en el desempeño del sistema?, etc. La calidad del modelo de optimización dependerá en gran parte de la asertividad en la definición del problema de decisión.

2. Construcción de un modelo: Un modelo de optimización considera necesariamente una abstracción o simplificación de la realidad. Por un lado se busca que el modelo sea representativo del problema real que se busca representar pero que al mismo tiempo sea simple de modo de favorecer su resolución haciendo uso de un algoritmo ad-hoc. Alcanzar este equilibrio no es trivial. Por ello ante un mismo problema puede existir más de un modelo de optimización que lo represente con distintos niveles de detalle y abstracción.

3. Solución del modelo: Una vez construido el modelo de optimización se deben identificar las alternativas de resolución para el mismo. Para ello se puede hacer uso de programas computacionales que utilizan algoritmos de resolución específicos dependiendo de las características del modelo. Por ejemplo, para resolver un problema de Programación Lineal (las variables de decisión se representan como funciones lineales tanto en la función objetivo como restricciones) se puede utilizar el Método Simplex.

4. Validación: Se verifica que la solución alcanzada cumpla con las condiciones (restricciones) impuestas al problema.

5. Implementación y control de la solución: Una vez verificada la solución se procede a su implementación. Cabe destacar que esto puede lugar a actualizaciones del modelo de optimización tanto en términos del modelo como el valor de los parámetros estimados. Por ejemplo, si el modelo de optimización corresponde a un Plan Maestro de la Producción (PMP) y se genera un cambio en el valor de la hora hombre de los trabajadores será necesario actualizar el valor del parámetro que representa dicho costo para posteriores instancias de resolución.

En la actualidad el uso de modelos de optimización es cada vez más frecuente en la toma de decisiones. Este mayor uso se explica, principalmente, por un mejor conocimiento de estas metodología en las diferentes disciplinas, la creciente complejidad de los problemas que se desea resolver, la mayor disponibilidad de software y el desarrollo de nuevos y mejores algoritmos de solución.

Las sub disciplinas más destacadas en la Investigación de Operaciones moderna son: