Cálculo del Valor Esperado de la Información Perfecta (VEIP) en el Modelo Newsvendor

En el contexto del Modelo Newsvendor (modelo de un periodo con demanda estocástica, pero con distribución de probabilidad conocida) el Valor Esperado de la Información Perfecta (VEIP o EVPI: Expected Value of Perfect Information) es un indicador cuantitativo que mide cuán lejos la solución en promedio está de la solución perfecta, es decir, de aquella solución donde se conoce la demanda de antemano. De forma análoga el VEIP corresponde al precio que se estaría dispuesto a pagar de modo de acceder a información perfecta respecto a la realización de la demanda.

Si el valor que adoptará la demanda es conocido con antelación entonces naturalmente el tamaño óptimo de pedido será la magnitud de la demanda y=D (conocida como solución «espere y vea») lo cual permite evitar incurrir en costos asociados a un inventario insuficiente o excesivo. En dicho caso el costo esperado correspondiente será simplemente c*D donde el parámetro c representa el costo unitario de adquisición o fabricación (según sea el caso).

Luego si obtenemos el promedio de todas las realizaciones de la demanda D obtenemos el costo c*µ, donde µ es el promedio de la demanda. En consecuencia, el VEIP corresponderá a la diferencia positiva entre el costo de la solución óptima sin conocer la demanda y el costo de la solución espere y vea.

Valor Esperado de la Información Perfecta

Consideremos el siguiente ejemplo que permite ilustrar el cálculo e interpretación del Valor Esperado de la Información Perfecta (VEIP):

María es un vendedora de flores que tiene que decidir todas las noches cuántas flores va a llevar de su plantación a su local comercial para vender al día siguiente. La demanda por flores es estocástica y por experiencia estima que sigue una distribución exponencial con λ=0,04. El costo por flor para María es de $6 y las flores no vendidas son consignadas (liquidadas) a $2 cada una a un vendedor de flores secas. Además, María estima que el costo por cliente perdido es de $10.

¿Cuál es la cantidad óptima de flores que María debe llevar todos los días desde su plantación a su local comercial si desea minimizar el costo esperado? ¿Cuál es el nivel de servicio instock asociado a esta alternativa?.

La cantidad óptima de pedido en el modelo newsvendor está dada por:

formula-solucion-newsvendor

Donde p representa el costo de quiebre de stock (en nuestro ejemplo por cliente perdido), c corresponde al costo de compra o producción y h el valor de consignación (en el ejemplo lo que se podría rescatar por cada unidad que no se logra vender). Considerando dicha información la cantidad óptima de flores que María debe llevar todos los días desde su plantación a su local comercial es:

pedido-optimo-newsvendor

Es decir, debe llevar diariamente 17 flores. Luego el nivel de servicio instock asociado a un pedido de 17 unidades es:

instock-newsvendor

¿Cuál es el costo total esperado para la cantidad optima de pedido propuesta? ¿Cuál es el Valor Esperado de la Información Perfecta (VEIP)?.

costo-esperado-newsvendor

El costo esperado de implementar un pedido de 17 flores es aproximadamente $219,32. A continuación calculamos el VEIP (recordar que en el caso de una distribución exponencial la media se obtiene de µ=1/λ).

calculo-veip

Como se señalo anteriormente el VEIP establece el precio máximo que María debería estar dispuesta a pagar de modo de acceder a información perfecta respecto a la realización de la demanda de flores.

Punto de Reposición e Inventario de Seguridad con Demanda y/o Lead Time Variable

En la revisión de las herramientas básicas para la gestión de inventarios destaca el modelo EOQ (Economic Order Quantity) o análogamente en su traducción al español conocido como Cantidad Económica de Pedido. Este modelo tiene una serie de supuestos simplificadores entre los cuales destaca que tanto la demanda y el tiempo de reposición (o lead time) es constante y conocido. Lo anterior limita significativamente su aplicación práctica dado que la regla general es que la gestión de inventarios esta afecta a la incertidumbre.

Al existir incertidumbre (en la demanda y/o lead time) será necesario establecer un nivel de servicio conocido como Instock (α) que permita acotar la probabilidad de quiebre de stock a un valor objetivo (1-α) durante el tiempo de reposición. En este contexto el Punto de Reposición (ROP) determina el momento en el tiempo en el cual será necesario realizar una nueva orden de pedido.

Las siguientes fórmulas permiten calcular el Punto de Reposición (ROP) para distintos escenarios de incertidumbre de la demanda y/o tiempo de reposición:

formulas-calculo-rop

Ejemplo Caso 1: Demanda Fija – Lead Time Fijo

Una empresa enfrenta una demanda anual de 1.500 unidades de un producto en particular. Los costos unitarios de mantener inventario son de $0,18 anual. El costo fijo de emitir un pedido (independiente del tamaño del mismo) es de $15 y el tiempo de reposición del proveedor es de 2 semanas. Determine el tamaño óptimo de pedido utilizando EOQ y el Punto de Reposición. Asuma que el año tiene 50 semanas.

El tamaño de pedido que permite minimizar la función de costos totales es:

q-optimo-caso-1

El Punto de Reposición corresponde a:

rop-caso-1

La empresa deberá realizar una nueva orden de pedido (de 500 unidades) cada vez que su inventario alcance las 60 unidades. Una pregunta natural es ¿cuál es la probabilidad de tener quiebre de stock durante el período de reposición?. La respuesta: 0%. Esto debido a que se asume que no existe incertidumbre y por tanto los pedidos llegaran justo a tiempo. En consecuencia en este escenario no es necesario disponer de un stock de seguridad.

Ejemplo Caso 2: Demanda Variable – Lead Time Fijo

La demanda diaria por una cerveza se distribuye normal con media de 50 litros y desviación estándar de 15 litros. El tiempo de reposición es de 10 días. Si se desea un nivel de servicio Instock de un 95% determine el Punto de Reposición y el Inventario de Seguridad.

rop-caso-2

Notar que Z(95%)~1,645 lo cual se puede obtener utilizando Excel y la fórmula: =DISTR.NORM.ESTAND.INV(95%). También se podría asumir que no está permitido comprar cerveza en fracciones de litros. En dicho caso ROP debe ser de 579[litros] (notar que el criterio de aproximación es al entero superior más cercano de modo que se garantice el nivel de servicio mínimo).

En cuanto al inventario de seguridad, éste corresponde a:

inventario-seguridad-caso-2

Ejemplo Caso 3: Demanda Fija – Lead Time Variable

La demanda diaria de un artículo es de 50 unidades. El tiempo de reposición sigue una distribución normal con media de 8 días y desviación estándar de 2 días. Obtenga el ROP que permita asegurar un nivel de servicio de un 95%.

rop-caso-3

El Punto de Reposición debe ser de 567[unidades].

Ejemplo Caso 4: Demanda Variable – Lead Time Variable

La demanda diaria de una hamburguesa sigue una distribución normal con media de 1.000 unidades y desviación estándar de 100 unidades. El tiempo de reposición también se distribuye normal con media de 8 días y desviación estándar de 2 días. Encuentre el Punto de Reposición para un nivel de servicio de un 95%.

rop-caso-4