Formulación de un Problema de Programación de Explotación Forestal resuelto con Solver de Excel

En el artículo Problema de Planificación Forestal resuelto con Graphic Linear Optimizer (GLP) describimos un problema de explotación forestal reducido en términos de la complejidad de un caso de esta naturaleza (de modo de representarlo gráficamente), el cual a continuación extenderemos a través de la incorporación de una serie de decisiones en el tiempo respecto a la actividad de producción, planificación de personal, gestión de inventarios, compra, entre otros.  En este contexto considere el caso de una compañía forestal que cosecha (tala) árboles los primeros meses del año. La compañía tiene una serie de pedidos que debe satisfacer cada mes. Estos datos se resumen a continuación:

demanda-arboles

Al 1 de Enero hay un total de 40 trabajadores y no hay árboles en inventario. La jornada laboral es de 40 horas semanales y 4 semanas laborales al mes. Para cosechar un árbol se requiere 4 horas hombre. Independiente de lo anterior la forestal tiene una capacidad de cosecha de 3.000 árboles mensuales lo cual está dado por la maquinaria disponible.

El sueldo mensual de cada trabajador es de M$400 (el sueldo se paga de forma íntegra ante todo evento, es decir, trabajando la totalidad de horas al mes o menos). La política de la gerencia es no utilizar horas extraordinarias pero si podría comprar árboles a otra forestal cercana a un costo unitario de M$18. Adicionalmente se ha convenido no contratar trabajadores por una fracción de una jornada de trabajo normal (160[horas/mes]). Esto implica que si se contrata un trabajador debe ser por 160[horas/mes] a un costo de M$400 pero no es válido, por ejemplo, contratar un trabajador por 80[horas/mes] a un costo de M$200. El costo de contratar un trabajador es de M$200 y el costo de despedir un trabajador se estima en M$600.

Almacenar un árbol en bodega tiene un costo de M$10 de un mes a otro. Sin embargo, en la bodega no hay espacio para almacenar más de 500 árboles.

Formule y resuelva un modelo de Programación Entera para este problema que permita hallar una política óptima de explotación para la forestal. Indique claramente las variables de decisión del modelo y detalle explícitamente la función objetivo y cada una de las restricciones del modelo.

Variables de Decisión:

variables-forestal

Donde t=1,…,6 con t=1 Enero y t=6 Junio.

Función Objetivo: Minimizar los costos durante el período de planificación asociado a las remuneraciones, contratación, despido, compra y mantenimiento de inventario (respectivamente).

objetivo-forestal

Restricciones:

Balance de Trabajadores: Por ejemplo la cantidad de trabajadores disponibles al final del mes de Marzo para labores de cosecha son aquellos que terminaron trabajando al final del mes de Febrero, más los contratados en el mes de Marzo y menos los despedidos en Marzo.

balance-trabajadores

Satisfacer Demanda de Árboles: Donde D_{t} representa la demanda (parámetros) de árboles para el mes t.

demanda-arboles-restriccion

Capacidad Tala (Mano de Obra): Talar cada árbol requiere 4 horas hombre y un trabajador aporte 160 horas hombre en un mes. Luego, cada trabajador puede talar como máximo 40 árboles mensuales.

capacidad-personal-forestal

Capacidad Tala (Máquinas): Se puede talar como máximo 3.000 árboles mensuales dada la capacidad de las máquinas.

capacidad-tala-maquina

Capacidad Bodega: La bodega tiene una capacidad máxima de almacenamiento de 500 árboles.

capacidad-bodega-forestal

No Negatividad y Enteros: Se deben satisfacer las condiciones de enteros para las variables de decisión no negativas.

no-negatividad-forestal

Al implementar en Solver de Excel el modelo anterior se alcanza la solución óptima (celdas en color amarillo) con un valor óptimo de M$152.360.

solver-explotacion-forestal

Se recomienda al lector verificar que la solución alcanzada satisface las restricciones anteriormente expuestas. Notar adicionalmente que el plan óptimo actual no despide trabajadores durante la planificación y contrata trabajadores en Febrero y Abril (11 y 19, respectivamente), los mismos meses donde adicionalmente compra árboles (10 y 110) a la forestal cercana. Naturalmente al final de la planificación no existen incentivos para mantener árboles en bodega.

¿Quieres tener el archivo Excel con la implementación computacional de este ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Problema de Planificación Forestal resuelto con Graphic Linear Optimizer (GLP)

El software Graphic Linear Optimizer (GLP) es una excelente herramienta que permite resolver gráficamente modelos de Programación Lineal. GLP fue desarrollado bajo la supervisión del profesor Jeffrey Moore (Ph. D) perteneciente a la Universidad de Stanford en Estados Unidos. En el siguiente artículo se muestra la utilización de Graphic LP Optimizer o GLP versión 2.6 en la resolución de un modelo de Programación Lineal en 2 variables que aborda una problemática de planificación forestal.

Una compañía forestal tiene un predio de 100 hectáreas de bosques para explotar. Talar y dejar el suelo para uso agrícola tiene un costo inmediato de M$10 por hectárea y un retorno posterior de M$50 por hectárea. Una alternativa es talar y plantar pino que tiene un costo inmediato de M$50 por hectárea y un retorno posterior de M$120 por hectárea. De aquí que los beneficios netos de ambos planes sean de M$40 y M$70 por hectárea, respectivamente. Desafortunadamente, el segundo plan no puede ser aplicado a todo el terreno ya que sólo se dispone de recursos inmediatos por M$4000. Formule y resuelva gráficamente utilizando el software Graphic Linear Optimizer (GLP) un modelo de Programación Lineal que provea el plan más eficiente de explotación, indicando claramente la solución óptima y valor óptimo.

El modelo de Programación Lineal para la situación anterior es:

modelo-planificacion-forest

Donde x_{1} representa las hectáreas para talar y dejar para uso agrícola y x_{2} las hectáreas para talar y plantar pino. En la siguiente imagen se muestra un extracto de la interfaz del programa GLP donde al pie de la misma se observa la solución óptima del problema con x_{1}=25x_{2}=75. El valor óptimo es 6.250 el cual se encuentra en la fila con la etiqueta PAYOFF.

GLP

El software GLP permite ajustar tanto la escala del gráfico como un zoom personalizado en cualquiera de los ejes de coordenadas. No obstante recomendamos hacer uso de la funcionalidad Auto Zoom que ajusta automáticamente la representación gráfica a una escala adecuada en relación a la magnitud de los datos de origen.

autozoom-glp

A continuación dejamos a nuestros usuarios un enlace de descarga del software Graphic Linear Optimizer o GLP para que puedan probar sus distintas funcionalidades.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]