En el artículo Cómo calcular la Capacidad y el Tiempo de Ciclo de un Proceso con una Carta Gantt discutimos cómo obtener estos importantes indicadores de procesos con el apoyo gráfico y conceptual que representa la utilización de una Carta Gantt. En dicho caso la resolución del problema se vio facilitada al asumir que los recursos asociados a las distintas actividades o tareas eran independientes entre sí. En este contexto se asume que el trabajador que participa de una etapa del proceso lo hace de forma exclusiva en dicha etapa sin colaborar en otras.
Por el contrario, calcular la capacidad y tiempo de ciclo de un proceso flexible, es decir, aquel donde los recursos pueden estar asociados a más de una actividad, impone un reto de mayor dificultad. Una aproximación intuitiva en este caso es construir una Carta Gantt que muestre el detalle del proceso de producción para luego deducir el tiempo promedio de ciclo y la capacidad. El siguiente ejemplo da cuenta de esta situación:
En un hospital hay dos doctores (Pedro y Francisca) y un enfermero (Diego) dedicados al control de niño sano. Para controlar a un niño se deben seguir los siguientes pasos:
-
Toma de Datos: Se deben tomar los datos del paciente e ingresarlos al computador. Se deben actualizar algunos campos, revisar los antecedentes e imprimir una ficha. Esto toma 5 minutos y solo lo puede hacer Diego.
-
Toma de Muestras: Se debe tomar la presión, peso y una muestra de sangre del paciente. Esto toma 5 minutos y lo puede hacer un doctor o un enfermero.
-
Consulta: Se debe examinar al paciente y completar la ficha. Esto toma 10 minutos y lo debe hacer un doctor.
Francisca propone organizar el trabajo de forma flexible. Es decir, en este nuevo esquema, Diego toma los datos, cualquiera de los tres podría tomar muestras, y ella o Pedro podrían atender consultas. Francisca opina que de esta forma podría aumentarse la utilización del staff en relación a la alternativa donde Diego toma los datos y las muestras y los doctores se dedican exclusivamente a las consultas.
Para evaluar lo propuesto anteriormente se sugiere confeccionar una Carta Gantt que permita determinar el mayor número de niños que es posible terminar de atender durante la primera hora de trabajo. ¿Cuál es la capacidad del proceso? ¿Cuál es el tiempo promedio de ciclo?.
La Carta Gantt para el proceso descrito anteriormente es la siguiente:
Se puede observar que el tiempo de flujo del primer paciente (niño) es de 20 minutos (cuya toma de muestra y consulta es atendida por Pedro, aun cuando sería indistinto que esto sea realizado por Francisca). El segundo niño termina su atención al cabo de 25 minutos desde iniciadas las actividades y el tercer niño sale del sistema 5 minutos más tarde que el segundo niño (y así sucesivamente continua el análisis).
¿Cómo determinamos el tiempo promedio de ciclo?. Para ello nos interesa identificar un patrón de tiempo que explique la salida de una nueva atención. Para este propósito enumeraremos los minutos en los cuales terminan las atenciones (consulta) para los distintos niños (1, 2, 3, 4,…, 13): 20, 25, 30, 40, 45, 50, 60, 65, 70, 80, 85, 90, 100. Luego se evidencia un patrón en dicho comportamiento: el segundo niño termina 5 minutos más tarde que el primero y el tercer niño 5 minutos más tarde que el segundo, no obstante el cuarto niño se desocupa 10 minutos más tarde que el tercero (y así sucesivamente). En consecuencia se espera que en el largo plazo en un intervalo de 20 minutos se terminen de atender 3 niños (trabajando a máxima capacidad) por lo cual el tiempo promedio de ciclo tiende a 20[min]/3[niños]=6,666[min/niño].
Notar que esta situación resulta evidente cuando el número de pacientes tiende a un número grande (en teoría infinito) donde el tiempo promedio de ciclo va convergiendo a 6,666[min/niño]. El siguiente gráfico es una forma alternativa de representar la información de la tabla anterior donde se ha incorporado una linea de color rojo punteada que cruza el eje vertical (tiempo promedio de ciclo en [min/niño]) en 6,666.
¿Cuál es la capacidad máxima de producción?. Si el tiempo promedio de ciclo es de 6,666[min/niño] entonces la capacidad de producción es 1/6,666[niños/min]*60[min/hora]=9[niños/hora]. Notar que este resultado no contradice el hecho que durante la primera hora de trabajo sólo se han terminado de atender 7 niños.