Ejemplo del Algoritmo de Wagner y Whitin (Sistemas de Loteo)

El Algoritmo de Wagner y Whitin (1958) consiste en una extensión natural y dinámica al problema de Tamaño Económico de Pedido (conocido también como Cantidad Económica de Pedido o EOQ) donde la demanda durante el período de planificación presenta variabilidad, no obstante, se sigue manteniendo el supuesto de asumir que dicha demanda es conocida.

De esta forma, dada una demanda que presenta variabilidad en el tiempo, costos de emisión de pedidos asociados a la gestión de los mismos y no al volumen involucrado en ellos, y costos de almacenamiento correspondientes al inventario de los productos almacenados en inventario, se busca determinar una política de pedidos que satisfaga los requerimientos de demanda al menor costo posible.

En este contexto asumiremos que el lead time (tiempo de reposición) es nulo, es decir, el pedido se recibe en el mismo período en el que se realiza y que adicionalmente estamos frente a un Problema de Tamaño de Lote No Capacitado, vale decir, que no existe limitantes de capacidad y que, eventualmente, se podría satisfacer la demanda íntegra del horizonte de planificación a través de un único pedido que se realice en el primer período (mediante la acumulación de inventarios para períodos futuros).

Un problema similar al que se aborda con el Algoritmo de Wagner y Whitin es el Problema de Producción e Inventario, en el cual frecuentemente se incorporan limitantes de capacidad para la cantidad de unidades que se pueden pedir en cada período, constituyendo de esta forma un problema capacitado.

Algoritmo de Wagner-Whitin

Los pasos detallados para la implementación del Algoritmo de Wagner y Whitin pueden encontrarse en la publicación académica original: Dynamic Version of the Economic Lot Size Model, (Versión Dinámica del Tamaño Económico de Pedido) disponible para descarga por un valor de 30 dólares. No obstante, a continuación resumiremos los pasos del algoritmo y presentaremos un ejemplo de su aplicación para favorecer su comprensión.

  • Paso 1: Considere la política de ordenar en el período t^{**}, t^{**}=1,2,…,t^{*} y satisfacer las demandas d_{t}, t=t^{**},t^{**}+1,…,t^{*} en ese orden.
  • Paso 2: Determine el costo total de las t^{*} políticas de pedido, sumando los costos de emisión y almacenamiento asociados a la emisión de un pedido en t^{**}, y el costo de actuar de forma óptima entre el período 1 y el período t^{**}-1 consideradas por si mismas.
  • Paso 3: De las t^{*} alternativas, seleccione la política de mínimo costo del período 1 hasta t^{*} consideradas de forma independiente.
  • Paso 4: Continué al período t^{*}+1 o detengase si t^{*}=N donde N representa el horizonte de planificación.

Ejemplo del Algoritmo de Wagner y Whitin

Consideremos las necesidades asociadas a un producto cualquiera para un período de planificación de 12 meses (N=12). La demanda Dt que se enfrenta cada mes es variable, como así también los costos de emitir un pedido (St), no obstante, el costo unitario de almacenar una unidad en inventario de un mes a otro (Ht) por simplicidad se asumirá que es fijo.

tabla demanda emisión almacenamiento

Aplicamos a continuación el Algoritmo de Wagner y Whitin:

El plan óptimo para el período 1 es ordenar (asumiendo un costo de emisión de $85).

Para el período 2 se deben evaluar 2 posibilidades:

  • ordenar en el período 2 y usar la mejor política para el período 1 considerado por si solo (con un costo de emisión de $102+$85=$187).
  • o emitir un pedido en el período 1 para ambos períodos (1 y 2), almacenando inventario para el período 2 (con un costo total de $85+$29=$114).

En este caso comparativamente es mejor la segunda alterativa.

En el período 3 existen tres alternativas:

  • emitir un pedido en el período 3 y utilizar la mejor política para los períodos 1 y 2 (a un costo de $102+$114=$216).
  • o emitir un pedido en el período 2 para los 2 últimos períodos (2 y 3) y utilizar la mejor política para el período 1 considerado de forma independiente (a un costo de $102+$36+$85=$223).
  • o emitir un pedido en el período 1 para los 3 períodos (con un costo de $85+$29+$36+$36=$186).

En nuestro ejemplo, resulta evidente que no existen incentivos para almacenar productos en inventario en el período 1 o 2 para satisfacer la demanda del período 4, dado que los costos de almacenamiento excederían los costos de emisión de pedido en el período 4. Si lo anterior es cierto, claramente no tiene sentido guardar inventario en el período 1 o 2 para satisfacer demanda de un período superior al 4 (5, 6, 7, etc).

Para los datos propuestos en nuestro ejemplo, la política óptima de pedidos según el Algoritmo de Wagner Whitin es la siguiente:

  1. Pedir 135 unidades (79+56) en el período 11 para satisfacer los requerimientos del período 11 y 12, y utilizar la política óptima para los períodos del 1 al 10.
  2. Emitir un pedido de 67 unidades para el período 10 y utilizar la política óptima de pedidos para los períodos 1 al 9.
  3. Pedir 112 unidades (67+45) en el período 8 para satisfacer la demanda de los períodos 8 y 9, y luego utilizar la mejor alternativa para los períodos del 1 al 7.
  4. Ordenar 121 unidades (61+26+34) en el período 5 para enfrentar la demanda de los períodos 5, 6 y 7.
  5. Pedir 97 unidades (36+61) en el período 3 para satisfacer la demanda de los períodos 3 y 4.
  6. Finalmente pedir 98 unidades (69+29) en el período 1 y con ello cumplir la demanda de los períodos 1 y 2.

La siguiente tabla resume los resultados anteriormente expuestos.

wagner y whitin

Al pie del cuadro resumen se detalla, por ejemplo, «567 indica la política óptima de pedido para los períodos del 1 al 7 es pedir en el período 5 y satisfacer la demanda de los períodos 5, 6 y 7 y adoptar una política óptima para los períodos 1 al 4 considerados de forma separada».

El costo asociado a implementar el Algoritmo de Wagner y Whitin al problema propuesto como ejemplo es de $864. Se propone al lector corroborar que dicha política minimiza los costos de inventario en comparación a otros sistemas de loteo como Costo Total Mínimo, Costo Unitario Mínimo, EOQ, entre otras.

Una forma de corroborar los resultados obtenidos es mediante una aplicación en Excel que permite automatizar los procesos de cálculo. Básicamente ingresando un inventario inicial (en nuestro ejemplo cero), la demanda pronosticada, los costos de emisión de pedidos y los costos de almacenamiento, se puede fácilmente aplicar una política de lotificación como aquellas que tratamos en extenso en el Plan de Requerimientos de Materiales (MRP).

wagner y whitin excel

Observación: La imagen anterior ha sido editada para efectos de una mejor resolución de modo que solo se visualiza los resultados parciales hasta el período 8. El archivo Excel con la aplicación donde se encuentran los resultados del ejemplo desarrollado en este artículo, como también la posibilidad de poder utilizarlo con otras políticas de lotificación se puede descargar a continuación.

[sociallocker]Descarga Aquí el Archivo Excel del Algoritmo de Wagner y Whitin: lotsizing[/sociallocker]

Problema de Tamaño de Lote No Capacitado (Formulación y Resolución en Solver)

El Problema de Tamaño de Lote No Capacitado o ULS (por sus siglas en inglés, Uncapacitated Lot-Sizing), consiste en decidir sobre un Plan de Producción para un horizonte de T periodos para un solo producto. El objetivo consiste en minimizar la sumatoria de los costos de producción, almacenamiento de productos en inventario y setup (costos de emisión), asumiendo que las demandas son conocidas en cada uno de los T periodos y éstas deben ser satisfechas de forma íntegra.

Una formulación típica del Problema de Tamaño de Lote No Capacitado considera los siguientes parámetros y variables de decisión.

Formulación Tradicional Problema de Tamaño de Lote No Capacitado

Variables de Decisión:

  • x_{t} = cantidad producida en el periodo t.
  • s_{t} = inventario al final del periodo t.
  • y_{t} = 1 si la producción ocurre en el periodo t, 0 si no.

Parámetros:

  • f_{t} = costo fijo de producción en el periodo t.
  • p_{t} = costo unitario de producción en el periodo t.
  • h_{t} = costo unitario de almacenamiento en el periodo t.
  • d_{t} = demanda en el periodo t.

La definición anterior da origen al siguiente problema de Programación Entera Mixta (PEM).

formulación tradicional tamaño de lote no capacitado

La función objetivo consiste en minimizar la suma de los costos de producción, costos de almacenamiento de productos en inventario y costos de emisión de pedidos, para todo el horizonte de planificación (T períodos).

Por otra parte las restricciones del problema quedan definidas por:

Balance de Inventario s_{t}=s_{t-1}+x_{t}-d_{t}: El inventario al final de un período t es igual al inventario al final del período anterior (t-1) más lo producido en el período t y menos lo demandado en el período t.

Capacidad de Producción x_{t}\leq M\cdot y_{t}: Si bien hemos definido el problema como no capacitado, esta restricción permite vincular la decisión de producción en un período con la cantidad (volumen) de dicha producción. De esta forma se evita situaciones anómalas como que en un período cualquiera se produzca y al mismo tiempo el y_{t} respectivo sea cero.

Además, asumiremos que la constante M es lo suficientemente grande (por ejemplo, la suma de las demandas para el horizonte de planificación). En términos prácticos esto hace que el problema no tenga limitantes de capacidad (es decir, es no capacitado) y que, en un extremo, podría producir en el primer período todo lo requerido durante el horizonte de planificación para luego ir satisfaciendo dichos requerimientos con los remanentes de inventario.

Inventario Inicial s_{0}=0: Se asume que no se dispone de inventario al inicio del horizonte de planificación.

Finalmente se establecen condiciones de no negatividad y binarios a las variables según corresponda.

Alternativamente se propone otra formulación como alternativa al Problema de Tamaño de Lote No Capacitado.

Formulación Dinámica Problema de Tamaño de Lote No Capacitado

Variables de Decisión:

  • w_{ts} = cantidad producida en el periodo t para satisfacer la demanda en el periodo s.
  • s_{ts} = inventario al final del periodo t destinado para el periodo s.
  • y_{t} = 1 si la producción ocurre en el periodo t, 0 si no.

Al conservar la definición de parámetros definida para la formulación anterior, se propone el siguiente modelo de Programación Entera:

formulación dinámica tamaño de lote no capacitado

De modo de corroborar la equivalencia de las formulaciones anteriores se propone una instancia sencilla que corresponde a 5 períodos de planificación (T=5) y donde los valores de los parámetros se resumen en la siguiente tabla. Por ejemplo, p_{1}=3 representa el costo de producción unitario en el período 1.

parámetros uls

La solución óptima alcanzada con la Formulación Tradicional del Problema de Tamaño de Lote No Capacitado ULS se observa en las celdas de color amarillo en la imagen a continuación. Se producen 32, 125 y 20 unidades en los períodos 1, 2 y 5, respectivamente, almacenando sólo productos en inventario al final del período 2 y 3 (84 y 36 unidades, respectivamente). El valor óptimo (costo total) asciende a $781.

solución óptima formulación tradicional uls

De forma análoga la solución óptima obtenida con la Formulación Dinámica del Problema de Tamaño de Lote No Capacitado ULS se observa en las celdas de color amarillo en la tabla a continuación.

Notar que w_{11}=32, es decir, en el primer período se produce sólo lo necesario para satisfacer los requerimientos de dicho período. Adicionalmente w_{22}=41, w_{23}=48 y w_{24}=36, es decir, en el período 2 se producen en total 125 unidades (41+48+36), para satisfacer la demanda de los períodos 2, 3 y 4. Por último en el período 5 se produce simplemente 20 unidades (w_{55}=20) para cumplir lo requerido.

Naturalmente dado lo descrito, la solución alcanzada en la Formulación Dinámica del ULS es equivalente a la obtenida en la Formulación Tradicional del ULS.

solución óptima formulación dinámica uls

Se puede consultar otras variantes de Problemas de Planificación de la Producción en nuestro sitio donde se detalla diversas formulaciones e instancias de problemas de esta naturaleza, donde destaca la contribución de la Investigación de Operaciones como herramienta de apoyo para la toma de decisiones.

[sociallocker]Descarga Aquí el Problema de Tamaño de Lote No Capacitado (ULS)[/sociallocker]

Estrategias de Procesos

En términos simples un proceso productivo consiste en una parte de una organización que toma insumos y los transforma en productos. Por cierto se espera que el valor de dichos productos sea mayor en comparación al valor de los insumos originales. En nuestro sitio en la categoría de Procesos, hemos dedicado un importante número de artículos que abordan el estudio de estos procesos de transformación desde una perspectiva tanto cuantitativa como cualitativa.

En esta oportunidad discutiremos las características principales de las estrategias de procesos y las clasificaciones frecuentemente aceptadas en la bibliografía de la Gestión de Operaciones que permite orientar el análisis estratégico de una empresa.

En primer lugar es importante destacar que las estrategias de procesos siguen un continuo y es perfectamente posible encontrar dentro de una compañía varias estrategias aplicadas de forma simultanea. Luego, las estrategias de procesos se clasifican básicamente en:

estrategias de procesos

Estrategia Orientada al Proceso

Esta corresponde a la configuración típica de talleres de trabajo conocidos también como Job Shop. Los distintos departamentos se organizan por proceso, agrupando aquellos que son similares. Se caracterizan por un volumen de producción relativamente bajo, no obstante tienen la flexibilidad para ofrecer una gran variedad de productos.

El siguiente diagrama representa un caso típico de la organización de un sistema productivo orientado al proceso, donde los productos siguen distintas rutas.

estrategia orientada al proceso

  • Ventajas

– Mayor flexibilidad de productos
– Equipamiento de propósito más general
– Baja inversión inicial

  • Desventajas

– Personal altamente entrenado
– Planificación y control de la producción mas complicado
– Baja utilización de equipamiento (en términos empíricos en un rango entre el 5% y el 25%)

Estrategia de Enfoque Repetitivo

En este caso la planta de producción se organiza como una línea de producción. Una representación esquemática de lo anterior se detalla en el siguiente diagrama donde el producto va desde la estación A hasta la estación C pasando por una secuencia de tareas determinadas por los requerimientos de ensamble del producto.

estrategia enfoque repetitivo

El proceso de ensamblaje de una moto como el que se muestra en la siguiente imagen corresponde a un esquema de producción que utiliza la estrategia de enfoque repetitivo. Esto se conoce alternativamente como un proceso tipo Flow Shop.

enfoque repetitivo

Estrategia Orientada al Producto

En este caso se observa un flujo continuo donde la planta de producción es organizada por producto. Se caracteriza adicionalmente por ser altamente automatizado y suele operar las 24 horas del día para evitar cierres y costos de arranque (setup) costosos.

  • Ventajas

– Bajo costo variable unitario
– Personal no tan competente, más especializado
– Fácil planificación y control de la producción
– Alta utilización de equipamiento (empíricamente entre el 70% y el 90%)

  • Desventajas

– Baja flexibilidad de productos
– Equipamiento más especializado
– Generalmente altas inversiones

Ejemplos típicos asociados a un proceso con un flujo continuo son aquellos vinculados a las actividades productivas del sector minero:

flujo continuo

Las principales características de los enfoques de procesos presentados se pueden consolidar a modo de resumen en una tabla, lo cual facilita el análisis comparativo.

comparación estrategias de procesos

En este mismo contexto se puede construir una Matriz de Proceso que en un eje de coordenadas que representa volúmenes de producción y variedad de productos, ayuda a identificar distintas estrategias.

matriz de procesos

Por ejemplo, una estrategia que se caracterice por un bajo volumen de producción y baja variedad de producto esta condenada al fracaso al enfrentar costos variables altos que no resultan ser competitivos.

En contraste alcanzar de forma simultanea volúmenes altos de producción y variedad de producto (conocido como personalización en masa o masiva «mass customization«) resulta difícil de alcanzar y promete importantes ventajas para aquellas empresas que las logran alcanzar. Un ejemplo emblemático de este caso ampliamente cubierto en la literatura es Dell Computer que le ha permitido compatibilizar productos a la medida de las necesidades de sus clientes mediante un ensamblaje a pedido sin sacrificar los beneficios de un alto volumen de producción.

Planificación de la Producción Multiproducto

El siguiente problema consiste en la formulación de un modelo de Programación Entera y posterior resolución computacional haciendo uso del complemento OpenSolver de Excel, específicamente en lo que se refiere a un modelo que permita encontrar la estrategia óptima para la Planificación de la Producción Multiproducto (es decir, 2 o más productos) y multiperiodo (2 o más períodos en el horizonte de evaluación). Referencias adicionales sobre esta clase de problemáticas pueden ser consultadas en la categoría Plan Maestro de la Producción (PMP) donde se presentan un importante volumen de ejercicios resueltos de planificación agregada. Dicho lo anterior a continuación presentamos el ejemplo objeto de nuestro análisis:

Una empresa desea optimizar la planificación de la producción de sus cinco productos principales para los primeros 6 meses del año 2016. Para el desarrollo de la tarea encomendada la empresa recolecta los siguientes antecedentes:

demanda-multiproducto-multi

  1. El proceso de fabricación es intensivo en mano de obra donde cada trabajador percibe un salario bruto de US$1.200 por una jornada de 160 horas de trabajo al mes.

  2. El costo unitario de materiales y gastos generales, excluyendo el trabajo es de US$12 para A, US$14 para B, US$9 para C, US$13 para D y US$8 para E.

  3. El costo de mano de obra de producción en tiempo extra se paga con un recargo de un 50% respecto a la hora trabajada en horario normal. No obstante por política de la empresa se establece un máximo de 200 horas hombre en tiempo extraordinario para cada mes, exceptuando Enero y Febrero donde el límite corresponde a 100 horas (por acuerdos con el sindicato).

  4. El costo mensual de almacenar una unidad de cualquier producto en inventario es de US$4 por unidad. La bodega tiene una capacidad de almacenamiento de 250 unidades.

  5. El tiempo de producción por unidad es de 5 horas para A, 6 horas para B, 8 horas para C, 4 horas para D y 3 horas para E.

  6. La contratación de personal de producción considera un costo único de US$1.500 (adicional al sueldo) por concepto de capacitación y entrenamiento.

  7. Para la reducción de horas de trabajo o despido considere en promedio: un sueldo de US$1.200 y una antigüedad de 2 años. Por política de estabilidad laboral se establece un máximo de despido de 6 trabajadores durante el primer semestre.

  8. El inventario inicial corresponde a 120 y 80 unidades para los productos B y C respectivamente. No se dispone de inventario inicial para el producto A, D y E.

  9. La planilla de trabajadores al 31 de Diciembre de 2015 es de 55 trabajadores.

  10. Es posible dejar demanda pendiente del producto A y D asumiendo un costo unitario de US$25 en cada caso, la cual no expira y sólo se posterga para un próximo mes. No obstante la empresa requiere que como máximo queden 500 unidades de demanda pendiente (en total para la suma de ambos productos) a fines de Junio de 2016.

  11. En cuanto al producto B, éste se puede comprar adicionalmente a un proveedor a un costo unitario de US$75. Adicionalmente el costo fijo de gestionar un pedido al proveedor del producto B (independiente del tamaño del pedido) es de US$200.

  12. En cuanto al producto E, éste se puede comprar adicionalmente a un proveedor a un costo unitario de US$35. Adicionalmente el costo fijo de gestionar un pedido al proveedor del producto E (independiente del tamaño del pedido) es de US$150.

Formule y resuelva un modelo de optimización matemática que permita determinar la política operacional que minimice los costos totales en el horizonte de planificación y cumpla con las condiciones expuestas.

Planificación de la Producción Multiproducto

Variables de Decisión:

variables-de-decision-multi

Notar que se dispone de 5 productos y 6 períodos. En este contexto y con el objetivo de lograr una notación más compacta se utilizan los índices i y t para representar los productos y períodos (meses), respectivamente.

Parámetros:

parametros-pmp-multiproduct

La definición de parámetros no es estrictamente necesaria y se realiza de modo de establecer un caso más general para el problema que facilita (compacta) la notación requerida para definir el modelo. Se puede apreciar que no todos los datos factibles de poder representar con parámetros ha sido llevado a cabo, lo cual corresponde a una decisión arbitraria la que sin embargo no afecta los resultados.

Función Objetivo:

funcion-objetivo-multiprodu

Se busca minimizar los costos totales de la planificación multiproducto y multiperiodo. Los costos involucrados son (en orden): producción, inventario, mano de obra en tiempo normal, mano de obra en sobretiempo, contratación, despido, demanda pendiente, compra del producto B y compra del producto E.

Restricciones:

Balance de Inventario: Para el caso del producto A y D se puede utilizar demanda pendiente y para los productos B y E se pueden realizar compras. En este caso sólo los requerimientos del producto C deben ser satisfechos de forma exclusiva a través de la producción e inventario.

balance-de-inventario-multi

Balance de Trabajadores: La cantidad de trabajadores disponibles en un mes para funciones de producción será igual a los disponibles en el mes anterior, más los contratados en el mes y menos los despedidos en dicho mes.

balance-de-trabajadores-mul

Capacidad de Producción: El lado izquierdo de la restricción representa la cantidad de horas requeridas en un mes para la producción de los 5 productos, lo cual no podrá superar las horas disponibles (siendo éstas las horas en tiempo normal más las horas que eventualmente se utilicen en sobretiempo).

capacidad-de-produccion-mul

Capacidad de la Bodega: Para cada mes del horizonte de planificación la cantidad de productos almacenados en inventario (suma de todos los productos) no podrá superar la capacidad de almacenamiento de la bodega de 250 unidades.

capacidad-bodega-multiprodu

Máximo de Compras B y E: La cantidad máxima de compra para el producto B y E dependerá si se adopta la decisión de realizar una compra en el mes respectivo. En dicho caso la cantidad máxima a comprar corresponderá a los parámetros o constantes grandes M_{B}M_{E}, respectivamente. Por ejemplo un valor para M_{B} podría ser 3.152 que corresponde a la suma de la demanda del producto B del mes 1 al mes 6.

maximo-compras-b-y-e

Máxima Cantidad de Despidos: Durante el horizonte de planificación no se pueden despedir más de 6 trabajadores.

maximo-despidos-pmp

Máximo Demanda Pendiente Mes 6: Al final del mes 6 no debe quedar más de 500 unidades de demanda pendiente para el producto A y D (en conjunto).

maximo-demanda-pendiente

No Negatividad y Enteros: Las variables de decisión deben adoptar no negativos y enteros (exceptuando las variables binarias).

La implementación computacional con OpenSolver del modelo de optimización anterior entrega los siguientes resultados. Las celdas en color amarillo corresponden a las variables de decisión del problema definidas inicialmente que satisfacen las restricciones impuestas (solución factible).

solucion-optima-pmp-multipr

El valor óptimo corresponde a US$599.770 que corresponde al costo mínimo asociado al plan de producción. A continuación se desglosa dicho costo total en los distintos ítems de costos según lo detallado anteriormente.

valor-optimo-multiperiodo

¿Quieres tener la planilla Excel con la resolución en OpenSolver de este problema?.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Problema de Producción y Mezcla de Café en Programación Lineal

Como hemos abordado anteriormente en el Blog, los modelos de Programación Lineal constituyen una alternativa metodológica para enfrentar Problemas de Mezcla de Productos. En este contexto a continuación presentamos la formulación de un modelo de optimización lineal junto a su implementación computacional haciendo uso de Solver de Excel el cual fue enviado por uno de nuestros usuarios de Costa Rica.

Problema de Producción y Mezcla

Una firma de café produce dos tipos de mezclas: suave y suavísimo. En la planta se cuenta con:

disponibilidad-y-caracteris

Por ejemplo, el costo por libra del café colombiano es $52, el cual contiene 2,5% de cafeína y se dispone de 20.000 libras para la producción de mezclas. Adicionalmente los productos que se comercializan en el mercado son:

precio-venta-y-demanda-cafe

Es decir, la mezcla suave se vende a $72 la libra, con una demanda de 35.000 libras y puede contener como máximo un 2,2% de cafeína.

Variables de Decisión:

variables-cafe

Donde i=1,2,3 representa los países de origen Colombia, Brasil y México, respectivamente y j=1,2 la mezcla Suave y Suavísimo, respectivamente.

Función Objetivo:

funcion-objetivo-ganancia-c

Se busca maximizar la ganancia (diferencia entre los ingresos menos los costos) asociada al plan de producción y venta de las mezclas de café. Con color amarillo se destaca los ingresos por venta correspondientes a las variedades Suave y Suavísimo y en color verde los costos asociados a la utilización de libras de café colombiano, brasileño y mexicano.

Restricciones:

Disponibilidad de Café: para cada país de origen la cantidad de libras utilizadas para el proceso de mezcla no debe superar la disponibilidad.

disponibilidad-cafe

Demanda de Mezclas: se debe satisfacer la demanda de cada mezcla de café a través de la asignación de las variedades provenientes de los 3 países de origen.

demanda-mezcla-cafe

Porcentaje Máximo de Cafeína: cada mezcla no debe superar un porcentaje máximo de cafeína admitido.

porcentaje-maximo-cafeina

No Negatividad: naturalmente las variables de decisión deben satisfacer las condiciones de no negatividad y se permiten valores fraccionarios: X_{ij}\geqslant 0.

Al implementar el modelo de Programación Lineal anterior haciendo uso de Solver de Excel se alcanza la siguiente solución óptima y valor óptimo:

solucion-solver-mezcla-cafe

La ganancia total (valor óptimo) es de $1.385.000, la cual se obtiene al asignar 20.000 libras de café Colombiano para la producción de la variedad Suave, 25.000 libras de café Brasileño para la producción de la mezcla Suavísimo y 15.000 libras de café Mexicano para la producción de la variedad Suave (solución óptima).

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]