El método de Suavizamiento Exponencial Simple (conocido también como Alisamiento Exponencial o Suavización Exponencial Simple) corresponde a una de las metodologías más populares para realizar Pronósticos de Demanda al disponer de una serie de tiempo. En este contexto en el artículo Pronóstico de Demanda con Alisamiento Exponencial para distintos valores de Alfa se detalla la aplicación de este método simulando su comportamiento y ajuste a los datos de la demanda real para distintos valores del parámetro de suavización alfa (α). A continuación presentaremos un compendio de ejercicios resueltos de Suavizamiento Exponencial Simple y un resumen de los principales conceptos tras este método.
El pronóstico del período t () será igual al pronóstico del período anterior, es decir, del período t-1 () más alfa (α) por el error del período anterior (), según se muestra en la fórmula a continuación:
Ejercicios Resueltos de Suavizamiento Exponencial Simple
Ejercicio N°1: Una empresa de consumo masivo lleva registro de la demanda mensual de uno de sus productos emblemáticos para un período de un año. Dicha información se presenta en la columna etiquetada Demanda en la imagen a continuación. Se requiere utilizar el método de suavizamiento exponencial simple considerando tres valores para el parámetro de suavizamiento alfa: 0,1; 0,5 y 0,9. Obtener el pronóstico del período 13 (mes de Enero del año siguiente) y evaluar el ajuste del método para cada uno de los valores de alfa propuestos.
Recordar que el suavizado exponencial simple requiere de un primer pronóstico para su aplicación. En este caso hemos decidido generar un pronóstico a contar del segundo período (mes de Febrero) y asumir que dicho valor corresponde a la demanda real del mes anterior (mes de Enero o período 1). Este criterio por cierto es arbitrario y se podría seleccionar otro punto de partida, por ejemplo, un promedio para la demanda real de los 12 meses.
Adicionalmente en las columnas E, F y G de la imagen anterior se observa los pronósticos para alfa 0,1, 0,5 y 0,9, respectivamente. En particular se puede corroborar la fórmula utilizada para obtener el pronóstico del mes de Febrero utilizando α=0,1 (celda E5), donde los resultados han sido aproximados al entero más cercano.
Ejercicio N°2: Considerando la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado una menor Desviación Absoluta Media (MAD)?.
Para obtener el MAD (Mean Absolute Deviation) o Desviación Absoluta Media, aplicamos el procedimiento descrito en el artículo Calculo del MAD y la Señal de Rastreo para un Pronóstico de Demanda. En la planilla interactiva a continuación puedes simular tanto los pronósticos como el comportamiento del MAD para distintos valores de alfa. Para ello basta con editar las celdas en color amarillo.
En caso de obtener un error del tipo #VALUE! ingrese los valores de α utilizando . (punto) como separador de decimal, por ejemplo, α=0.1.
Conclusión: El alfa que provee el menor MAD al período 12 entre las 3 alternativas evaluadas (0,1, 0,5 y 0,9) es α=0,1 (MAD de 449,7). En efecto se puede corroborar utilizando el módulo Predictor de Crystal Ball (según se describe en Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple) que α=0,001 es el valor de alfa que minimiza el MAD en este ejemplo.
Ejercicio N°3: Asuma nuevamente la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado un menor Error Porcentual Absoluto Medio (MAPE)?.
A continuación se presentan los resultados del cálculo del MAPE donde en particular se puede observar que la fórmula de cálculo es simplemente el promedio de los errores absolutos en términos porcentuales. Luego se concluye que al igual que en el Ejercicio N°2 el parámetro alfa que tiene mejor desempeño en relación al MAPE es α=0,1.
Observación: En la pantalla de los resultados obtenidos con Predictor de Crystal Ball se observa que para α=0,001 el valor del MAPE es 22,43%. Te recomendamos verificar el resultado anterior haciendo uso del procedimiento anteriormente descrito.
Ejercicio N°4: Calcule y grafique la Señal de Rastreo (Tracking Signal o TS) para los métodos aplicados en el Ejercicio N°1.
Se observa que la Señal de Rastreo se encuentra en los límites comúnmente aceptados [-4,4] MAD. Adicionalmente no se observa una tendencia evidente en su comportamiento por lo cual no se evidencia la presencia de error sistemático. Criterios y antecedentes similares sobre la interpretación conceptual de este indicador de desempeño se aborda en el artículo Interpretación de la Señal de Rastreo de un Pronóstico de Demanda.
Conclusión: En general el método de Suavizamiento de Exponencial Simple tiene un mejor desempeño cuando la serie de tiempo no presenta tendencia ni estacionalidad marcada. En el caso de evidenciar alguno de estos componentes en la serie de tiempo (o ambos de forma simultanea) se recomienda explorar otros métodos de pronóstico como el Método de Suavizamiento Exponencial Ajustado a la Tendencia (Suavización Exponencial Doble) o el Método de Descomposición (entre otros).