Un dato atípico conocido comúnmente también como outlier es aquel cuyo valor es numéricamente distante del resto de los datos. Esta situación en particular se puede ver reflejada en una serie de tiempo cuando la variable en cuestión por alguna causa extraordinaria tiene un comportamiento que escapa a los parámetros de comportamiento usuales. Por ejemplo, tal podría ser el caso del shock de demanda por mascarillas luego de un brote de influenza, la demanda de agua en bidones luego de una emergencia provocada por causas naturales (terremoto, aluvión, etc), la demanda de pilas (baterías) y linternas luego de un terremoto, etc.
En el siguiente artículo presentamos una serie de tiempo que corresponde a la demanda de un producto determinado donde en el mes de Julio se observa una demanda que numéricamente escapa de forma significativa respecto al resto de los datos. Para dicha demanda real se ha aplicado el método de Suavizamiento Exponencial para distintos valores de alfa (0,1; 0,5 y 0,9) como también el método de Medias Móviles para 3 y 5 períodos (n=3 y n=5) obtenidos con la ayuda de Excel.
Para favorecer la interpretación de los resultados y por separado se muestra el ajuste de los métodos de pronóstico de demanda anteriormente identificados en las siguientes gráficas:
En el caso del método de Suavizamiento Exponencial se puede observar que mientras mayor sea el valor de alfa el pronóstico reacciona con mayor fuerza a la presencia del dato atípico u outlier. Adicionalmente y luego del efecto del outlier el pronóstico se ajusta nuevamente a valores cercanos a los que se observan en la serie de tiempo. Notar adicionalmente que en los casos de α=0,1 y α=0,5 los pronósticos superan la demanda real en el resto de los períodos, es decir, de Agosto a Diciembre.
Por otra parte y luego de pronosticar la demanda utilizando el método de Media Móvil Simple, se observa que a medida que mayor sea el valor de n los efectos del outlier tienden a perpetuarse en el tiempo. En contraste a lo anterior, al seleccionar n=3 el efecto del outlier se ve reflejado hasta la última oportunidad en que dicho dato real es considerado para efectos de pronósticos, es decir, en la proyección del mes de Octubre (que corresponde al promedio simple de la demanda real de Julio, Agosto y Septiembre).
¿Qué hacer con el outlier?. No es una pregunta con una respuesta sencilla. Una primera recomendación es buscar información complementaria que ayude a explicar las razones de este comportamiento de la demanda que escapa a lo usual. Efectivamente y según los ejemplos presentados anteriormente es difícil extrapolar a futuro un comportamiento que obedece sólo a una causa excepcional. Ahora bien, un dato atípico en casos puntuales puede suponer un cambio sustantivos en las preferencias de los clientes que eventualmente se podría sostener en el tiempo. En dicho caso omitir el dato atípico para efectos de proyección no sería recomendable.