Ejemplo Pronóstico de Demanda utilizando Variación Estacional

Si el comportamiento histórico de la demanda de un producto tiene un marcado comportamiento estacional una alternativa de pronóstico a evaluar es aquel que utiliza de forma exclusiva los índices estacionales (también conocido como factores estacionales o variación estacional). Dicho procedimiento por cierto es más acotado que el Método de Descomposición y reduce el número de pasos necesarios para realizar un pronóstico. Bloqueadores solares, helados, estufas, sistemas de aire acondicionado, etc, son buenos ejemplos de productos que tienen un comportamiento de la demanda claramente influido por la época del año y ante la necesidad de extrapolar dichos patrones a futuro resulta necesario considerar la estacionalidad en el método de pronóstico.

Pronóstico de Demanda utilizando Variación Estacional

A continuación un ejemplo que permite observar su utilización: La empresa de softwares Megasoft tiene disponibles los datos de ventas de notebooks de los últimos 2 años, divididos en 8 trimestres. Si la demanda esperada para el próximo año es de 2.000 notebooks, estime la demanda para los próximos 4 trimestres llevando en cuenta el factor estacionalidad.

tabla-demanda-indice-estaci

En primer lugar debemos calcular el promedio de la demanda trimestral. Por ejemplo, el Trimestre 1 y 5 corresponden al primer trimestre del año 1 y 2, respectivamente y el promedio es (300+416)/2=358. Luego continuando el procedimiento se obtiene el promedio trimestral de los próximos períodos. El total de 2.716 unidades corresponde a la sumatoria de los promedios trimestrales (358+650+1.038+670). Si dicha sumatoria la dividimos por 4 períodos (2.716/4=679) se obtiene lo que correspondería a la demanda de un trimestre promedio sin estacionalidad. A continuación se calcula el factor de estacionalidad o índice de estacionalidad dividiendo el promedio trimestral por la demanda promedio trimestral sin estacionalidad.

calculo-factor-de-estaciona

Si la demanda para los próximos 4 trimestres es de 2.000 unidades entonces se espera que la demanda trimestral sin estacionalidad sea simplemente asumir que la demanda anual se divide en 4 trimestres (es decir 500 unidades) y luego se ajusta dicho resultado por los factores de estacionalidad estimados anteriormente.

pronostico-demanda-factor-e

Notar que la sumatoria de los pronósticos de demanda son 2.000 unidades (263,5+478,5+764,5+493,5) y la demanda proyectada considera las características estacionales de la demanda. El siguiente gráfico muestra el comportamiento de la demanda histórica (lineas azul y roja) y la demanda pronosticada (línea verde).

grafico-pronostico-demanda-

Una forma alternativa de representar la misma información es en un gráfico de línea donde con color rojo, amarillo, verde y azul, se muestra el comportamiento de la demanda de los Trimestres 1, 2, 3 y 4, respectivamente, quedando de manifiesto que el método utilizado logra rescatar el comportamiento estacional de la demanda.

demanda-indice-estacional

Características de un Proceso Productivo Flow Shop (Producción en Masa)

Un Proceso Productivo Flow Shop (conocido también como Producción en Masa) es similar a un proceso continuo, no obstante, está orientado al producto en líneas de fabricación exclusivas. El Flow Shop es un proceso de transformación en el cual continuas unidades de salida que fluyen en forma discreta siguen una misma secuencia de operaciones, con baja variación en el producto y a muy alta velocidad, involucrando líneas de producción. Una representación esquemática de un proceso de estas características se muestra a continuación:

diagrama-flow-shop

Algunos ejemplos típicos de procesos tipo Flow Shop es el ensamble de electrodomésticos (donde se implementa el Plan de Requerimiento de Materiales o MRP), el envasado de vino y bebidas gaseosas, la fabricación de tarros de conserva, etc.

embotellado-de-vino-flow-sh

Las características de un proceso Flow Shop o de producción en masa son las siguientes:

Alto volumen de producto: Debido a que es un proceso con baja variedad de producto esto contribuye a un mayor volumen de producción. Esto es vital para que la empresa pueda alcanzar economías de escala.

Baja variedad de producto: Los productos suelen ser estándares y con baja variabilidad en sus características de modo que la producción sea masiva.

Equipamiento de propósito específico: En concordancia con la baja variedad de producto. Adicionalmente esta característica establece mayores barreras a la salida en caso de ser necesario vender los activos fijos.

Operadores menos capacitados: Al ser un proceso repetitivo el conocimiento de la función a desempeñar se alcanza con mayor rapidez. Luego las instrucciones de trabajo son escasas.

Bajo valor de la materia prima comparado con el valor del producto: Como también un inventario de producto en proceso (WIP) relativamente bajo en relación a la salida (output).

Make to Stock: Se fabrica para almacenar inventario de producto final y con estas unidades enfrentar la demanda del mercado lo que permite una mayor rapidez de respuesta en comparación a un proceso Job Shop. Para ello es vital realizar Pronósticos de Demanda que sean acertados.

Programación simple: Debido a la estandarización del proceso y el énfasis en el volumen de producción, se debe fijar una tasa de salida ad-hoc a los pronósticos de ventas.

Ejemplo Pronóstico de Demanda con Media Móvil Ponderada

En el contexto de los métodos de series de tiempo aplicados para los Pronósticos de Demanda, el método de Media Móvil Ponderada es una variantes de la técnica de Media Móvil Simple donde existe la posibilidad de modificar las ponderaciones que tiene cada uno de los datos en el cálculo del promedio. Este método resulta ser útil cuando es válida la premisa de que el pasado más reciente tiene un mayor poder predictivo respecto al futuro (por lo cual se suele asociar una mayor ponderación en el cálculo del promedio), sin embargo, en caso de existir estacionalidad en el patrón histórico de la demanda puede ser necesario ponderar con mayor fuerza un dato más antiguo de la serie de tiempo.

La fórmula de cálculo para una Media Móvil Ponderada se presenta a continuación:

formula-media-movil-pondera

En la nomenclatura anterior Ft representa el pronóstico para el período t, At es la demanda real (observada) para el período t y Wt representa las ponderaciones seleccionadas para el promedio ponderado. Por supuesto la sumatoria de dichas ponderaciones debe ser igual a 1 (o un 100%).

Ejemplo Media Móvil Ponderada

Para ilustrar la aplicación del método utilizaremos la serie histórica que presentamos en el artículo sobre cómo utilizar una regresión lineal para realizar un pronóstico de demanda. En esta oportunidad aplicaremos el método de media móvil simple con n=3 (como medio de contraste) y una media móvil ponderada de 3 períodos igualmente pero con ponderaciones seleccionadas arbitrariamente de 60%, 30% y 10%, respectivamente.

planilla-media-movil-ponder

En la columna «MP» se incluyen los resultados del promedio móvil ponderado redondeando los resultados al entero más cercano. Notar que para una mayor comodidad se pueden fijar las ponderaciones a celdas específicas, lo que facilita copiar la fórmula a los períodos siguientes. A continuación y para facilitar la interpretación de los resultados se presenta un gráfico que contrasta los datos de la serie histórica y los dos dispositivos de pronóstico utilizados.

grafico-media-movil-pondera

Se puede apreciar que en la medida que las ponderaciones seleccionadas para cada período se aproximen a 1/3, el pronóstico obtenido a través de la media móvil ponderada se asemejará al comportamiento de los resultados del promedio móvil simple con n=3. En este contexto es importante destacar que no existe procedimiento exacto que permita seleccionar de forma inequívoca las ponderaciones Wt de un promedio móvil ponderado y en consecuencia la «prueba y error» suelen ser estrategias utilizadas para evaluar el ajuste del pronóstico a los datos reales.

Finalmente sí el objetivo es proponer alguno de los métodos de pronósticos utilizados en este artículo se recomienda complementar el análisis calculando el MAD y Señal de Rastreo (TS) en cada caso, de modo de disponer de mayores elementos de juicio antes de tomar una decisión.

¿Quieres tener el archivo Excel con la resolución de este problema?. Recomiéndanos en Facebook o Google+ utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo.

[sociallocker]Media Móvil Ponderada[/sociallocker]

Intervalo de Confianza para un Pronóstico de Demanda

En el siguiente artículo abordaremos cómo calcular un Intervalo de Confianza para un Pronóstico de Demanda, lo cual permite incorporar de forma explícita el impacto que tiene la incertidumbre en la planificación de las actividades comerciales y operacionales de una empresa.

Para ello utilizaremos el Método de Alisado Exponencial o Suavizamiento Exponencial el cual hemos descrito previamente en nuestro sitio. (Ver también: Suavizamiento Exponencial Doble Ejercicios Resueltos).

Consideremos una serie histórica con la demanda de un producto para un periodo de 12 semanas. Se requiere desarrollar un intervalo de confianza del 95% para el Pronóstico de Demanda de la semana 13 utilizando el Método de Suavizamiento Exponencial Simple con α=0,3.

Para ello adoptaremos el supuesto que los errores del pronóstico se distribuyen normalmente lo cual es algo que por supuesto se puede verificar con una dedicación mayor de trabajo y para lo cual se puede utilizar un software de análisis estadístico como Easyfit.

En este contexto la tabla a continuación se muestra el pronóstico comenzando a contar de la semana 4 (esta es una decisión arbitraria dado que podría haber comenzado antes).

Notar que el primer pronóstico corresponde simplemente a la Media Móvil Simple de las primeras 3 semanas.

Luego el pronóstico de la semana 5 se obtiene de la aplicación de la siguiente fórmula: F5=F4+α(A4-F4) que al reemplazar se obtiene F5=1.775+0,3*(1.860-1.775)=1.800,5~1.801 (hemos aproximado éste y los otros pronósticos al entero más cercano según se puede apreciar en la fórmula de Excel utilizada):

intervalo-de-confianza-pron

Ahora necesitamos calcular la desviación estándar del error del pronóstico la cual se obtiene simplemente evaluando en los datos de la tabla anterior según se muestra a continuación:

desviacion-estandar-error-c

Finalmente el intervalo de confianza de un 95% para el pronóstico de la semana 13 se obtiene: (notar que F13=1.766+0,3*(1.780-1.766)=1.770,2~1.770)

intervalo-confianza-95-porc

El resultado anterior es consistente con el proporcionado por la herramienta de Cálculos de Probabilidad de Geogebra donde para una distribución de probabilidad normal (recordar el supuesto de normalidad del error adoptado anteriormente) con media μ=1.770 (F13) y desviación estándar SF=71, el área achurada en color azul representa los valores contenidos en el intervalo de confianza de un 95% (% del área bajo la curva achurada).

intervalo-de-confianza-geog

Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda

El Método de Mínimos Cuadrados o Regresión Lineal se utiliza tanto para pronósticos de series de tiempo como para pronósticos de relaciones causales. En particular cuando la variable dependiente cambia como resultado del tiempo se trata de un análisis de serie temporal.

En el siguiente artículo desarrollaremos un Pronóstico de Demanda haciendo uso de la información histórica de venta de un producto determinado durante los últimos 12 trimestres (3 años) cuyos datos se observan en la siguiente tabla resumen:

tabla-datos-regresion-linea

La ecuación de mínimos cuadrados para la regresión lineal es la que se muestra a continuación donde β0β1 son los parámetros de intercepto y pendiente, respectivamente:

ecuacion-regresion-lineal

Estimar los valores de dichos parámetros es sencillo haciendo uso de una planilla Excel tal como muestra la tabla a continuación:

calculo-regresion-lineal-co

Luego evaluamos en las ecuaciones presentadas anteriormente para obtener los valores de β0 y β1:

resultados-parametros-regre

Una vez obtenido los parámetros de la regresión lineal se puede desarrollar un pronóstico de demanda (columna color naranja) evaluando en la ecuación de la regresión para los distintos valores de la variable independiente (x).

Por ejemplo, para el primer trimestre el pronóstico es: Y(1)=441,71+359,61*1=801,3.

Observación: los valores de los pronósticos han sido redondeados arbitrariamente a un decimal para mayor comodidad.

regresion-lineal-tabulada-e

Notar que con la información que hemos obtenido podemos calcular el MAD y la Señal de Rastreo y utilizar estos indicadores para validar la conveniencia de utilizar este procedimiento como dispositivo de pronóstico.

Adicionalmente puede resultar de interés consultar el artículo Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab que muestra cómo abordar el caso de realizar una regresión lineal con más de una variable independiente (explicativa).

Siguiendo con nuestro análisis a continuación podemos desarrollar un pronóstico de demanda para los próximos 4 trimestres (un año) que corresponden a los trimestres 13, 14, 15 y 16:

  • Y(13)=441,71+359,61*13=5.116,64
  • Y(14)=441,71+359,61*14=5.476,25
  • Y(15)=441,71+359,61*15=5.835,86
  • Y(16)=441,71+359,61*16=6.195,47

Si bien el procedimiento anterior es válido puede ser resumido haciendo uso de las herramientas de análisis de datos de Excel o simplemente realizando un ajuste de una regresión lineal en un gráfico de dispersión de la misma forma que abordamos en el articulo sobre el Método de Descomposición. Para ello luego de realizar el gráfico nos posicionamos en una de las observaciones y luego botón derecho del mouse para seleccionar «Agregar línea de tendencia…».

regresion-lineal-grafico-di

Luego en la interfaz de Excel activamos las opciones «Presentar ecuación en el gráfico» y «Presentar el valor R cuadrado en el gráfico» (este último indicador según se aborda en los cursos de estadística consiste en una medida de la bondad de ajuste de la regresión).

Notar que los valores obtenidos para los parámetros de la regresión son similares salvo menores diferencias por efecto de aproximación.

regresion-lineal-ajustada-e

Otra opción disponible para ajustar una Regresión Lineal haciendo uso de Excel es a través del Complemento llamado Herramientas para análisis.

Su activación es simple: en el menú Archivo (esquina superior izquierda en Excel) ir a Opciones, luego Complementos, a continuación a la derecha de donde dice Complementos de Excel presionar Ir… y luego activar la Herramientas para análisis.

herramienta para análisis excel

Una vez activada las Herramientas para análisis, se puede encontrar ésta abajo del complemento Solver en el menú de Datos.

análisis de datos excel

Luego de las opciones disponibles que nos ofrece este complemento seleccionamos Regresión.

regresión análisis de datos

A continuación seleccionamos el Rango Y de entrada las celdas correspondientes a la variable dependiente (Ventas) y en Rango X de entrada las celdas correspondientes a la variable independiente (Trimestre).

Debemos activar adicionalmente la casilla Residuos si deseamos obtener un pronóstico para las ventas del Trimestre 1 al Trimestre 12 (junto al cálculo del error o residuo de la estimación).

interfaz regresión análisis de datos

Finalmente presionamos Aceptar lo que generará una nueva hoja en nuestra planilla de cálculo.

Un extracto de los resultados es el que se presenta a continuación, donde en color celeste se destaca los coeficientes asociados a los parámetros de la regresión lineal β0 y β1, respectivamente, y en color naranjo el pronóstico obtenido para cada uno de los doce trimestres al utilizar la ecuación de la regresión.

Por ejemplo: Y(1)=441,67+359,61*1=801,28. El residuo o error correspondiente para dicho período (Trimestre 1) es: e_{1}=A_{t}-F_{t}=600-801,28=-201,28.

resultados análisis regresión

¿Quieres tener el archivo Excel con el ajuste de la Regresión Lineal de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]