Cómo calcular el Instock y Fill Rate asociado a un Inventario

En la Gestión de Inventarios resulta como regla general tomar decisiones en un contexto de incertidumbre en el cual no se conoce por anticipado el valor o realización de la variable aleatoria que representa la demanda de un producto.

En este aspecto es importante detenerse un momento dado que según nuestra experiencia docente suele ser una fuente de confusión de los alumnos. Se puede asumir que en base a información histórica se puede construir una demanda empírica que represente razonablemente el comportamiento de la demanda de un producto o incluso buscar su representación a través de una función de probabilidad conocida o demanda teórica (por ejemplo distribución normal, distribución uniforme, distribución gamma y otras utilizadas frecuentemente para fines académicos) para la cual se deberá estimar los mejores valores de los parámetros respectivos (por ejemplo en el caso de seleccionar una distribución normal se deberá estimar los valores de la media µ y la desviación estándar σ).

Para este propósito se puede hacer uso de software estadístico como Easyfit. No obstante, independiente si trabajamos con una distribución empírica o distribución teórica que modele el comportamiento de la demanda, conocer con anticipación el valor que tomará ésta no es posible dado que esto corresponde a la realización de una variable aleatoria.

En el contexto anterior resulta necesario disponer de indicadores de gestión que permitan evaluar el desempeño de una política de mantenimiento de inventario que ayude a los tomadores de decisiones a tomar acciones correctivas de ser necesario.

Para ello presentaremos 2 indicadores frecuentemente utilizados en la actualidad, en particular en la industria de la venta al detalle o comercio minorista, conocida comúnmente como Retail.

Instock: Considerando una demanda aleatoria, y dado una cantidad de inventario Q decimos que su probabilidad de Instock es P[D<=Q].

Fill Rate: Es un indicador de servicio que representa el porcentaje de la demanda que se logra satisfacer. En fórmula:

formula-fill-rate-esperado

Ejemplo Instock y Fill Rate

La panadería Bredi es conocida por producir el mejor pan fresco de la ciudad, por eso tiene ventas sustancialmente altas. Los siguientes datos fueron recolectados durante el último año y para cada valor de k en la segunda columna se indican que porcentaje de días del año pasado la demanda fue exactamente k (baguettes):

tabla-distribucion-empirica

En base a la demanda esperada, el gerente de la panadería Bredi decide hornear 475 baguettes cada mañana (Q=475). ¿Cuál es el Instock y Fill Rate asociado a este tamaño de lote de producción?. (Es importante verificar que la suma de las probabilidades (días en que la demanda fue exactamente k unidades de producto) es un 100%).

Instock: P[D<=475]=25%+15%+10%+10%=60%, es decir, la probabilidad de que en un día cualquiera se puede satisfacer la demanda de forma íntegra es un 60%. Por ejemplo, si la demanda de un día es de 500 baguettes dado un tamaño de producción de 475 unidades se incurre en un quiebre de stock.

Fill Rate: Las ventas esperadas depende del tamaño de lote de producción (Q). Por ejemplo, si la realización de la variable aleatoria (demanda) resulta ser igual o superior a 475 baguettes, se venderán sólo lo que se produce (Q=475) y el remanente se considera como venta perdida.

fill-rate-demanda-empirica

En cuanto a la demanda esperada, ésta es independiente de Q por tanto corresponde simplemente a ponderar los distintos valores de k por la probabilidad de ocurrencia del escenario respectivo. En consecuencia en el ejemplo:

resultado-fill-rate

Lo anterior permite corroborar un resultado que se puede generalizar: Instock <= Fill Rate

Conclusiones: Naturalmente al aumentar el tamaño de Q se incrementa tanto el Instock como el Fill Rate, no obstante, esta decisión no necesariamente es la recomendable dado que aumenta la probabilidad de quedar con stock al final del día (el cual en el ejemplo podría no tener uso alternativo en caso que se decida botar el pan que sobre o podría venderse como pan frío al día siguiente obteniendo usualmente una fracción del costo de fabricación).

Este tipo de escenarios es al que usualmente los tomadores de decisiones se ven enfrentado en problemas de ciclo de vida corto (Modelo Newsvendor) ante lo cual se necesita disponer de estimaciones adicionales.

Estrategia de Inventario en el Plan Maestro de la Producción (PMP)

Una estrategia pura para desarrollar un Plan Maestro de la Producción (PMP) es la acumulación de inventarios cuando la capacidad de producción excede el Pronóstico de Demanda, para luego desacumular inventario cuando los requerimientos son mayores o incluso cuando la demanda supera la capacidad de producción.

Para presentar una aplicación de esta estrategia consideraremos los antecedentes de operación descritos en el artículo Formulación y Resolución de un modelo de Programación Entera para un Plan Maestro de la Producción (PMP).

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

Luego de aplicar la estrategia de acumulación y desacumulación de inventario se obtiene la siguiente alternativa factible con costo total de US$1.988.200.

estrategia-inventario-plan-

Cabe destacar que si bien esta estrategia evita la contratación y despido de trabajadores, de todos modos es necesario contratar 66 trabajadores en el mes de Enero. Este número no es arbitrario: corresponde a la mínima cantidad de trabajadores que permite mediante el inventario enfrentar los requerimientos de demanda durante el período de planificación.

Por ejemplo, si se contrata en Enero más de 66 trabajadores se alcanzaría una opción factible pero no en el mínimo posible de trabajadores. Si se contrata menos de 66 trabajadores no se alcanza un plan factible, lo que obligaría a la contratación de trabajadores en un mes posterior a Enero (lo cual determinaría una estrategia mixta).

Algunas conclusiones que se pueden obtener de la aplicación de este enfoque:

  • Tiene la ventaja práctica de poder enfrentar de mejor forma una demanda real mayor a la pronosticada cuando se dispone de inventario.
  • El costo adicional de esta opción es de US$519.800 en comparación al valor óptimo alcanzado en la resolución del modelo de optimización para los mismos datos. Lo anterior corrobora la evidencia empírica de que las estrategias puras suelen ser más costosas que los enfoques mixtos.
  • Evita una alta rotación de personal lo cual afecta la moral de los trabajadores y la productividad de los mismos.

Método de Descomposición aplicado para un Pronóstico de Demanda

El Método de Descomposición corresponde a una metodología para la Proyección de la Demanda que como el nombre lo sugiere «descompone» el comportamiento de una Serie de Tiempo en tendencia, estacionalidad y ciclo, relacionando dichos componentes a través de la siguiente fórmula (multiplicativa):

formula-metodo-descomposici

Donde:

  • S= Valor pronosticado
  • T= Factor de tendencia
  • C= Componente cíclico
  • Y= Componente estacional
  • μ= Variación no sistemática

A continuación aplicaremos el Método de Descomposición para el pronóstico de la demanda de un producto sobre el cual tenemos información histórica para un período de 4 años (48 meses).

datos-metodo-descomposicion

Paso 1: Se debe calcular el factor de estacionalidad, realizando un cuociente entre el valor pronosticado según el Promedio o Media Móvil Simple con n=12 y el valor real de la demanda. En la imagen a continuación se observa que el promedio móvil para Enero de 2010 corresponde al promedio simple de la demanda real desde Enero de 2009 a Diciembre de 2009. (Los resultados han sido aproximados a un decimal)

Paso-1-Metodo-Descomposicio

Paso 2: Se calcula el factor de estacionalidad promedio para cada período. Este procedimiento se facilita al trabajar con Tablas Dinámicas (Selecciona las columnas de los datos de la planilla según muestra la imagen a continuación, luego en el Menú de Excel ir a «Insertar» y en la esquina superior izquierda seleccionar Tabla Dinámica).

Paso-2-Metodo-Descomposicio

Al desplegarse el menú «Lista de campos de tabla dinámica» arrastramos el campo de Mes a Etiquetas de columnas y el campo Año a Etiquetas de fila. Por último arrastrar el campo (a/b)*100 a Valores seleccionando en la configuración de dicho campo «Promedio«.

Campos-Tabla-Dinamica

La Tabla Dinámica tiene la siguiente forma donde se obtiene el factor de estacionalidad promedio:

Paso-2-Tabla-Dinamica

Paso 3: Se ajusta cada factor promedio, multiplicándolo por el factor de estacionalidad K, calculado de:

formula-k

En el ejemplo: K=(12*100)/(1.235,8)=0,971 (aproximado). Notar que los valores de la fila Indice Estacionalidad corresponde a la ponderación del Factor de Estacionalidad Promedio por el parámetro K.

Indice-Estacionalidad-Ajust

Paso 4: Calcular la tendencia de la serie de tiempo ajustando los datos a una regresión lineal, donde la variable dependiente corresponde a la demanda (Y) y la variable independiente a los períodos (X).

Para este propósito se puede aplicar el procedimiento de forma muy sencilla en Excel a través de las siguientes alternativas:

1. Hacer un Gráfico de Línea con los valores de la demanda real como se muestra en la imagen a continuación:

Grafico-Linea-Regresion-Lin

Luego sobre el gráfico de línea con el mouse o teclado seleccionar con el botón derecho la opción «Agregar línea de tendencia». Por defecto se ofrece la alternativa de tendencia lineal (no modificar) y debemos seleccionar las siguientes opciones:

regresion-lineal-opciones

Una vez realizado lo anterior obtendremos el gráfico que muestra el ajuste de la regresión y su ecuación. En nuestro ejemplo la regresión es: Y=98,038*X+15.157.

Ajuste-Regresion-Lineal

2. En la pestaña de «Datos» de Excel en la esquina superior derecha observaremos la opción «Análisis de datos» la cual debemos seleccionar, ingresando en el «Rango Y de entrada» los valores en la columna de la demanda real y en «Rango X de entrada» los valores de los períodos.

Paso-4-Metodo-Descomposicio

Luego presionar «Aceptar«, luego de lo cual se generará una nueva hoja en la planilla de cálculo con los resultados de la Regresión Lineal: (hemos marcado con color amarillo los resultados más relevantes en la aplicación del método de descomposición que son por supuesto coherentes con los que se obtienen al desarrollar el procedimiento del gráfico de línea).

Regresion-Lineal

Paso 5: Se calcula el factor cíclico de la serie histórica a partir de la siguiente expresión:

formula-factor-ciclico

Por ejemplo para Enero de 2010 (dato 13) el Factor Cíclico es 0,973 (se obtiene dividiendo 15.994,4 en 98,038*13+15.157). En la imagen a continuación se muestra la fórmula en Excel que hemos utilizado considerando una aproximación de los resultados a 3 decimales.

Paso-5-Metodo-Descomposicio

Paso 6: Determinar el factor cíclico promedio para cada período. En este paso al igual que en el Paso 2 una Tabla Dinámica resulta de bastante ayuda:

Paso-6-Metodo-Descomposicio

Una vez completado el Paso 6 estamos en condiciones de realizar un pronóstico de demanda utilizando la fórmula presentada al inicio del artículo. Por ejemplo si queremos pronosticar la demanda de Enero de 2013 (período 49) el resultado sería el siguiente:

  • T(49) = 98,038*49+15157 = 19.960,862
  • C(Ene) = 0,966
  • Y(Ene) = 90,8/100
  • S(49) = 19.960,862 * (90,8/100) * 0,966 = 17.508,231

¿Te pareció interesante este artículo? ¿Desearías tener la planilla de cálculo Excel con los resultados y detalle de los procedimientos?

[sociallocker]https://www.dropbox.com/s/0wch166wbgki6pq/Plantilla%20M%C3%A9todo%20Descomposici%C3%B3n.xlsx?dl=0[/sociallocker]

Pronóstico de Demanda con Alisamiento Exponencial para distintos Alfa (α)

El método de pronóstico de Alisamiento o Suavizamiento Exponencial pertenece a la categoría de Series de Tiempo, es decir, aquellos métodos donde se utiliza información de la demanda histórica para poder pronosticar el futuro. Su nombre se debe a que cada incremento del pasado se reduce en (1 – α) por lo cual se considera válido que la importancia de los datos disminuye en la medida que son más antiguos.

Para poder generar un pronóstico a través del método de Alisamiento Exponencial necesitamos el pronóstico más reciente, la demanda que se presentó para ese período y una constante de suavizamiento α (alfa).

Alisamiento Exponencial

El valor del parámetro alfa es entre 0 y 1. En esta escala para valores de alfa relativamente pequeños se reducen las variaciones de corto plazo asociadas al pronostico lo cual es razonable cuando la demanda real tiene un comportamiento relativamente estable. Sin embargo, si la demanda presenta cambios significativos en el corto plazo nos interesará seguir éstos más de cerca y en ese caso debiéramos seleccionar una constante alfa más grande.

Ejemplo Suavizamiento Exponencial

A continuación presentaremos 3 pronósticos para valores de alfa de α=0,2, α=0,5 y α=0,8. Los resultados se han aproximado (arbitrariamente y por comodidad) al entero más cercano. Notar que en cada caso el primer pronostico es de 200 (igual a la demanda real de Enero). Esta selección es usual dado que para la aplicación del método se necesita un primer pronóstico (o punto de partida) y frecuentemente se selecciona el dato real del período anterior:

Pronóstico Alisamiento Exponencial

En la tabla se puede apreciar que el pronóstico para el mes de Marzo utilizando α=0,2 es de 206. Esto se obtiene como F(Marzo)=200+0,2(230-200)=206. Siguiendo un procedimiento similar se puede calcular el resto de los pronósticos.

¿Cómo decidir que constante de suavizamiento alfa resultó mejor?. Un primer acercamiento es graficar el pronóstico y comparar su comportamiento con la demanda real. El siguiente gráfico representa esta situación. Se puede observar que para α=0,8 se replica de forma más cercana el comportamiento de la demanda aún cuando se aprecia un rezago (situación característica de este método). Por el contrario, para α=0,2 la variación de corto plazo es menor y el pronóstico básicamente marca una leve tendencia creciente. Finalmente para α=0,5 se obtiene un pronóstico intermedio entre los 2 escenarios anteriores.

Gráfico Alisamiento Exponencial

En otro artículo discutimos como mediante el MAD y la Señal de Rastreo podemos simular y seleccionar una constante alfa en base a un criterio cuantitativo. Adicionalmente en la publicación Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple se muestra la aplicación del método de suavizamiento exponencial utilizando el software Crystal Ball.

Pronóstico de Demanda con Media Móvil Simple

El método de Media Móvil Simple (o Promedio Móvil Simple) es un procedimiento de cálculo sencillo que pertenece a la categoría de pronósticos de Series de Tiempo, es decir, que utiliza información histórica del desempeño de la variable que se desea pronosticar para poder generar un pronóstico de la misma a futuro. Es decir, se considera válida la premisa que el pasado es de utilidad para predecir el futuro.

El escenario ideal para la utilización del método de Media Móvil Simple es cuando la demanda real no presenta mayores variaciones de corto plazo, no presenta una tendencia marcada e idealmente no presenta estacionalidades.

En este contexto, por ejemplo, se podría esperar que muchos productos alimenticios presentan estas características (arroz, aceite, azúcar, etc) y por tanto su aplicación en principio puede resultar adecuada.

La función matemática que permite obtener un pronóstico utilizando Media Móvil Simple es:

Media Movil Simple

Donde Ft es la demanda pronosticada para el período t y At la demanda real para el período t. La constante o parámetro n determina el número de períodos a promediar.

Mientras mayor sea el valor de n el pronostico suele presentar menor variabilidad y aproximar una tendencia de la serie de tiempo. Por cierto, esto último no necesariamente es mejor y por tanto se pueden utilizar distintos valores de n para efectos de evaluación y luego comparar el desempeño.

Media Móvil Simple (Ejemplo)

En la tabla a continuación se muestra el procedimiento de pronóstico de demanda con Media Móvil Simple con n=3. Por ejemplo, el pronóstico de Abril se obtiene promediando los valores reales de Enero, Febrero y Marzo: F(Abril)=(200+230+260)/3=230. El pronóstico de Mayo se obtiene promediando los valores reales de Febrero, Marzo y Abril: F(Mayo)=(230+260+180)/3=223. Notar que los pronósticos no consideran decimales (decisión arbitraria).

Calculo Media Movil Simple

Para tener una primera aproximación a lo acertado del pronóstico se recomienda graficar los datos reales de demanda y los obtenidos con el pronóstico. De esta forma se obtiene un acercamiento sobre la magnitud de los errores del pronóstico y la naturaleza de éste, es decir, si se genera una sobre o sub estimación de la demanda real. Este análisis se puede complementar con el Cálculo del MAD y la Señal de Rastreo para el pronóstico generado.

grafico-media-movil-simple

Se puede observar que en 6 de los 9 pronósticos realizados se genera una subestimación de la demanda real lo cual nos da indicios que este método de pronóstico no es lo más adecuado en este caso. Dicho esto puede ser recomendable explorar con un método que considere el efecto de la tendencia de la serie, como por ejemplo, una Regresión Lineal Simple.

¿Quieres tener el archivo Excel con la resolución de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]