Un muestreo de aceptación simple esta definido por el número de unidades en la muestra n y el número de aceptación c. El tamaño de la muestra n puede variar entre una unidad hasta incluso todos los artículos del lote (que en general se representa por N). En tanto el número de aceptación c determina el número máximo de artículos defectuosos que se pueden encontrar en una muestra antes de rechazar el lote.
En este contexto determinar los valores de n y c es un asunto crítico en todo muestreo de aceptación. Dichos valores se obtienen mediante la interacción de 4 factores, a saber: NCA (Nivel de Calidad Aceptable o AQL: Acceptable Quality Level), α, PTDL (Porcentaje de Tolerancia de Defectos en el Lote o LTPD: Lot Tolerance Percent Defective) y β.
Por una parte al fabricante le interesa que el plan de muestreo tenga una probabilidad baja de rechazar lotes buenos. En tanto el objetivo del consumidor es asegurarse que el plan de muestreo tenga una probabilidad baja de aceptar lotes malos. Se considera que los lotes son de alta calidad si contienen no más de un nivel específico de unidades defectuosas (NCA). Por el contrario un lote es de baja calidad si el porcentaje de defectos es mayor que una cantidad específica (PTDL).
La probabilidad asociada con el rechazo de un lote de alta calidad o α se conoce como riesgo del productor. Análogamente la probabilidad relacionada con la aceptación de un lote de baja calidad o β es el riesgo del consumidor.
Consideremos la siguiente adaptación de un ejemplo extraído del Libro Administracion De Operaciones de Chase, Jacobs y Aquilano (Duodécima Edición).
Una empresa fabrica scaners de radar que se utilizan para detectar trampas de velocidad. Las tarjetas de circuito impreso de los scaners se comprar a un distribuidor externo. El distribuidor produce las tarjetas con un NCA de un 2% y está dispuesto a correr un riesgo de un 5% (α) de que se rechacen lotes con este nivel o menor número de defectos. La empresa considera inaceptables los lotes con 8% o más defectos (PTDL) y quiere asegurarse de que aceptará esos lotes de baja calidad no más del 10% de las veces (β). Se acaba de entregar un lote grande. ¿Qué valores de n y c se deben seleccionar para determinar la calidad de este lote?.
Los parámetros del problema son NCA=2%, α=5%, PTDL=8% y β=10%. A continuación para determinar n y c consideramos un extracto de una tabla de un plan de muestreo para α=5% y β=10%.
En primer lugar se divide PTDL/NCA=8%/2%=4. A continuación en la columna 2 de la tabla anterior se busca la razón que se mayor o igual al cuociente 4. Este valor es 4,057 que está asociado a c=4. Finalmente encontrar el valor en la columna 3 que está en la misma fila que c=4 y luego dividir es cantidad entre NCA para obtener n (1,970/2%=98,5). En consecuencia el plan de muestre apropiado es (n,c)=(99,4).
Para determinar la eficiencia del plan de muestreo al discriminar entre lotes buenos y malos para valores intermedios se propone construir una Curva Característica de Operación (CO). Estas curvas son únicas para cada combinación de n y c e ilustran la probabilidad de aceptar lotes con diversos porcentajes de defectos.
Por ejemplo si el porcentaje de defectos es de un 2% (NCA) la probabilidad de aceptación es de un 95%, por tanto existe un α=5% (1-0,95) de rechazar un lote de alta calidad (riesgo del productor). En tanto para un porcentaje de defectos de un 8% (PTDL) existe una probabilidad de un 10% de aceptar un lote de baja calidad (riesgo del consumidor).