Suavizamiento Exponencial Simple (Ejercicios Resueltos)

El método de Suavizamiento Exponencial Simple (conocido también como Alisamiento Exponencial o Suavización Exponencial Simple) corresponde a una de las metodologías más populares para realizar Pronósticos de Demanda al disponer de una serie de tiempo. En este contexto en el artículo Pronóstico de Demanda con Alisamiento Exponencial para distintos valores de Alfa se detalla la aplicación de este método simulando su comportamiento y ajuste a los datos de la demanda real para distintos valores del parámetro de suavización alfa (α). A continuación presentaremos un compendio de ejercicios resueltos de Suavizamiento Exponencial Simple y un resumen de los principales conceptos tras este método.

El pronóstico del período t (F_{t}) será igual al pronóstico del período anterior, es decir, del período t-1 (F_{t-1}) más alfa (α) por el error del período anterior (A_{t-1}-F_{t-1}), según se muestra en la fórmula a continuación:

Alisamiento Exponencial

Ejercicios Resueltos de Suavizamiento Exponencial Simple

Ejercicio N°1: Una empresa de consumo masivo lleva registro de la demanda mensual de uno de sus productos emblemáticos para un período de un año. Dicha información se presenta en la columna etiquetada Demanda en la imagen a continuación. Se requiere utilizar el método de suavizamiento exponencial simple considerando tres valores para el parámetro de suavizamiento alfa: 0,1; 0,5 y 0,9. Obtener el pronóstico del período 13 (mes de Enero del año siguiente) y evaluar el ajuste del método para cada uno de los valores de alfa propuestos.

suavizacion-exponencial-par

Recordar que el suavizado exponencial simple requiere de un primer pronóstico para su aplicación. En este caso hemos decidido generar un pronóstico a contar del segundo período (mes de Febrero) y asumir que dicho valor corresponde a la demanda real del mes anterior (mes de Enero o período 1). Este criterio por cierto es arbitrario y se podría seleccionar otro punto de partida, por ejemplo, un promedio para la demanda real de los 12 meses.

Adicionalmente en las columnas E, F y G de la imagen anterior se observa los pronósticos para alfa 0,1, 0,5 y 0,9, respectivamente. En particular se puede corroborar la fórmula utilizada para obtener el pronóstico del mes de Febrero utilizando α=0,1 (celda E5), donde los resultados han sido aproximados al entero más cercano.

Ejercicio N°2: Considerando la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado una menor Desviación Absoluta Media (MAD)?.

Para obtener el MAD (Mean Absolute Deviation) o Desviación Absoluta Media, aplicamos el procedimiento descrito en el artículo Calculo del MAD y la Señal de Rastreo para un Pronóstico de Demanda. En la planilla interactiva a continuación puedes simular tanto los pronósticos como el comportamiento del MAD para distintos valores de alfa. Para ello basta con editar las celdas en color amarillo.

En caso de obtener un error del tipo #VALUE! ingrese los valores de α utilizando . (punto) como separador de decimal, por ejemplo, α=0.1.

Conclusión: El alfa que provee el menor MAD al período 12 entre las 3 alternativas evaluadas (0,1, 0,5 y 0,9) es α=0,1 (MAD de 449,7). En efecto se puede corroborar utilizando el módulo Predictor de Crystal Ball (según se describe en Cómo utilizar el Módulo Predictor en Crystal Ball para Promedio Móvil Simple y Suavizado Exponencial Simple) que α=0,001 es el valor de alfa que minimiza el MAD en este ejemplo.

crystal-ball-suavizado-expo

Ejercicio N°3: Asuma nuevamente la información del Ejercicio N°1 ¿Cuál de los 3 métodos tiene asociado un menor Error Porcentual Absoluto Medio (MAPE)?.

A continuación se presentan los resultados del cálculo del MAPE donde en particular se puede observar que la fórmula de cálculo es simplemente el promedio de los errores absolutos en términos porcentuales. Luego se concluye que al igual que en el Ejercicio N°2 el parámetro alfa que tiene mejor desempeño en relación al MAPE es α=0,1.

calculo-mape-suavizado-expo

Observación: En la pantalla de los resultados obtenidos con Predictor de Crystal Ball se observa que para α=0,001 el valor del MAPE es 22,43%. Te recomendamos verificar el resultado anterior haciendo uso del procedimiento anteriormente descrito.

Ejercicio N°4: Calcule y grafique la Señal de Rastreo (Tracking Signal o TS) para los métodos aplicados en el Ejercicio N°1.

señal-de-rastreo-suavizamie

Se observa que la Señal de Rastreo se encuentra en los límites comúnmente aceptados [-4,4] MAD. Adicionalmente no se observa una tendencia evidente en su comportamiento por lo cual no se evidencia la presencia de error sistemático. Criterios y antecedentes similares sobre la interpretación conceptual de este indicador de desempeño se aborda en el artículo Interpretación de la Señal de Rastreo de un Pronóstico de Demanda.

Conclusión: En general el método de Suavizamiento de Exponencial Simple tiene un mejor desempeño cuando la serie de tiempo no presenta tendencia ni estacionalidad marcada. En el caso de evidenciar alguno de estos componentes en la serie de tiempo (o ambos de forma simultanea) se recomienda explorar otros métodos de pronóstico como el Método de Suavizamiento Exponencial Ajustado a la Tendencia (Suavización Exponencial Doble) o el Método de Descomposición (entre otros).

patrones-series-de-tiempo

Error Porcentual Absoluto Medio (MAPE) en un Pronóstico de Demanda

El Error Porcentual Absoluto Medio (MAPE o Mean Absolute Percentage Error) es un indicador del desempeño del Pronóstico de Demanda que mide el tamaño del error (absoluto) en términos porcentuales. El hecho que se estime una magnitud del error porcentual lo hace un indicador frecuentemente utilizado por los encargados de elaborar pronósticos debido a su fácil interpretación. Incluso es útil cuando no se conoce el volumen de demanda del producto dado que es una medida relativa. Por ejemplo, afirmar que el «error porcentual promedio es de un 4%» es más fácil de comprender que cuando se dice «el error absoluto medio por período es de 1.000 unidades» (que sería la información que podríamos obtener del MAD y que en abstracto no provee información si esta magnitud de error es aceptable o no).

La fórmula para el cálculo del MAPEError Porcentual Absoluto Medio es:

formula-mape

La siguiente imagen representa una serie de tiempo de 12 meses donde At representa la demanda real de un producto cualquiera y Ft el pronóstico utilizando una Regresión Lineal. La ecuación de la regresión ajustada es y=5,6993*x+217,12 donde la variable y representa la demanda y la variable x el período (mes).

regresion-lineal-mape

El detalle de los resultados se presenta a continuación donde en la columna D se muestran los datos reales y en la columna E los pronósticos. Por ejemplo para el mes de Enero (mes 1) el pronóstico se obtiene como F1=5,6993*1+217,12=223 (aproximado arbitrariamente al entero más cercano).

excel-calculo-mape

Luego obtenemos el error porcentual absoluto para cada mes del período de evaluación (celdas amarillas de la tabla anterior). Notar que en el ejemplo dicho cálculo correspondería para el mes de Enero en la fórmula F3/D3 donde el numerador (F3) es el error absoluto del período y el denominador (D3) la demanda real del mes. Finalmente se repite el procedimiento para cada uno de los meses lo cual se facilita al hacer uso de una planilla Excel.

calculo-mape

En conclusión el Error Porcentual Absoluto Medio es de un 14,56%. De forma complementaria se puede calcular el MAD y la Señal de Rastreo (TS) de modo de tener un mayor número de indicadores para interpretar de forma adecuada el desempeño del pronóstico.

tabla-mape-mad-y-ts

Es conveniente graficar tanto el comportamiento del MAD como la Señal de Rastreo (TS) para facilitar la interpretación de los resultados. A continuación se presentan los resultados:

grafico-mad-y-ts

Notar que la magnitud media absoluta del error aumenta en los últimos períodos. En cuanto al comportamiento de la señal de seguimiento o TS si bien ésta varía en el rango comúnmente aceptable de [-4,4] MADs, las sub estimaciones sucesivas del valor real de la demanda de los meses de Agosto, Septiembre y Octubre marcan una tendencia creciente en su comportamiento, lo cual se compensa luego con las sobre estimaciones de los meses de Noviembre y Diciembre. A continuación un vídeo de nuestro canal de Youtube con la implementación en Excel del ejemplo descrito en este artículo:

¿Quieres tener el archivo Excel con el cálculo del Error Porcentual Absoluto Medio (MAPE) de este Ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Interpretación de la Señal de Rastreo de un Pronóstico de Demanda

La Señal de Rastreo (conocida también como Tracking Signal o TS) es una medida de desempeño que permite medir la desviación del pronóstico respecto a variaciones en la demanda. Análogamente se puede interpretar como el número de MAD (Desviación Media Absoluta o Mean Absolute Deviation) que el pronóstico está sobre o bajo la demanda real. La fórmula para calcular la Señal de Rastreo o Señal de Seguimiento corresponde a:

formula-sr

Los límites aceptables para la Señal de Rastreo dependen del tamaño de la demanda pronosticada (los artículos de volumen alto o ingreso alto se deben vigilar con frecuencia) y la cantidad de tiempo del personal disponible (los límites aceptables más estrechos hacen que mayor cantidad de pronósticos estén fuera de los límites y por lo tanto requieren de más tiempo para investigarlos). No obstante usualmente se considera como límites aceptables una Señal de Rastreo que varía en el rango de [-4,4] MAD.

grafico-mad-normal

La siguiente tabla mide el porcentaje del área de una distribución normal de media cero cubierta en el rango +- # de MADs.

porcentaje-datos-rango-ts

Para una correcta interpretación de la Señal de Rastreo consideremos el siguiente ejemplo: La empresa de softwares Megasoft tiene disponibles los datos de demanda de notebooks de los últimos 2 años, divididos en 8 trimestres.

tabla-demanda-trimestral

Utilizando una Regresión Lineal obtenga el pronóstico de demanda para los próximos 4 trimestres (en caso de obtener resultados fraccionarios redondee el pronóstico al entero más cercano).

Consideramos como variable dependiente la Demanda y como variable independiente el Trimestre. Adicionalmente sabemos que:

calculo-b0-y-b1

Luego estimamos el coeficiente de pendiente β1 y el coeficiente de intercepto β0. Notar que la cantidad de cifras significativas utilizadas para estimar los parámetros de la regresión ha sido arbitrario:

ecuacion-regresion-ajustada

Una vez calculados los parámetros β0β1 estamos en condiciones de realizar los pronósticos para los próximos 4 trimestres (períodos 9, 10, 11 y 12).

pronostico-regresion-lineal

Notar que al obtener los pronósticos de demanda utilizando exclusivamente la tendencia se omite las características estacionales del comportamiento de la demanda. Por ejemplo, se espera sobrestimar la demanda del trimestre 9 y subestimar la demanda del trimestre 11.

¿Cómo se comparta el método de pronóstico si lo ajustamos a los datos históricos?. Para ello será necesario realizar las proyecciones con la regresión lineal desde el trimestre 1 al trimestre 8. Por ejemplo, el pronóstico del trimestre 1 es F(1)=361+70,667(1)=432 (aproximado al entero más cercano). Los resultados completos se resumen en la tabla a continuación donde los valores en la columna celeste corresponden al MAD y los valores en la columna amarilla son la Señal de Rastreo.

tabla-calculo-señal-seguimi

A continuación graficamos el comportamiento de la Señal de Rastreo (TS):

grafico-ts

La Señal de Rastreo se encuentra en el rango comúnmente aceptado y no se evidencia una tendencia en su comportamiento. No obstante el patrón que sigue (periodos bajo y sobre cero alternados) sugiere que utilizar la tendencia como único dispositivo de pronóstico no rescata de forma adecuada la variabilidad de los datos y la estacionalidad de los mismos. Lo anterior queda de manifiesto al comparar los datos reales versus los pronosticados:

ajuste-regresion-a-demanda-

Cuando TS es positivo la demanda real excede el pronóstico, por el contrario cuando TS es negativo la demanda real es menor que el pronóstico.

Como conclusión se propone utilizar un método que considere explícitamente la estacionalidad para realizar proyecciones como el Método de Pronóstico de Demanda utilizando Variación Estacional o el Método de Descomposición. No obstante en general se busca que la Señal de Rastreo varíe en el rango comúnmente aceptado de [-4,4] MAD y que su comportamiento no sugiera la presencia de error sistemático.

Ejemplo Pronóstico de Demanda con Media Móvil Ponderada

En el contexto de los métodos de series de tiempo aplicados para los Pronósticos de Demanda, el método de Media Móvil Ponderada es una variantes de la técnica de Media Móvil Simple donde existe la posibilidad de modificar las ponderaciones que tiene cada uno de los datos en el cálculo del promedio. Este método resulta ser útil cuando es válida la premisa de que el pasado más reciente tiene un mayor poder predictivo respecto al futuro (por lo cual se suele asociar una mayor ponderación en el cálculo del promedio), sin embargo, en caso de existir estacionalidad en el patrón histórico de la demanda puede ser necesario ponderar con mayor fuerza un dato más antiguo de la serie de tiempo.

La fórmula de cálculo para una Media Móvil Ponderada se presenta a continuación:

formula-media-movil-pondera

En la nomenclatura anterior Ft representa el pronóstico para el período t, At es la demanda real (observada) para el período t y Wt representa las ponderaciones seleccionadas para el promedio ponderado. Por supuesto la sumatoria de dichas ponderaciones debe ser igual a 1 (o un 100%).

Ejemplo Media Móvil Ponderada

Para ilustrar la aplicación del método utilizaremos la serie histórica que presentamos en el artículo sobre cómo utilizar una regresión lineal para realizar un pronóstico de demanda. En esta oportunidad aplicaremos el método de media móvil simple con n=3 (como medio de contraste) y una media móvil ponderada de 3 períodos igualmente pero con ponderaciones seleccionadas arbitrariamente de 60%, 30% y 10%, respectivamente.

planilla-media-movil-ponder

En la columna «MP» se incluyen los resultados del promedio móvil ponderado redondeando los resultados al entero más cercano. Notar que para una mayor comodidad se pueden fijar las ponderaciones a celdas específicas, lo que facilita copiar la fórmula a los períodos siguientes. A continuación y para facilitar la interpretación de los resultados se presenta un gráfico que contrasta los datos de la serie histórica y los dos dispositivos de pronóstico utilizados.

grafico-media-movil-pondera

Se puede apreciar que en la medida que las ponderaciones seleccionadas para cada período se aproximen a 1/3, el pronóstico obtenido a través de la media móvil ponderada se asemejará al comportamiento de los resultados del promedio móvil simple con n=3. En este contexto es importante destacar que no existe procedimiento exacto que permita seleccionar de forma inequívoca las ponderaciones Wt de un promedio móvil ponderado y en consecuencia la «prueba y error» suelen ser estrategias utilizadas para evaluar el ajuste del pronóstico a los datos reales.

Finalmente sí el objetivo es proponer alguno de los métodos de pronósticos utilizados en este artículo se recomienda complementar el análisis calculando el MAD y Señal de Rastreo (TS) en cada caso, de modo de disponer de mayores elementos de juicio antes de tomar una decisión.

¿Quieres tener el archivo Excel con la resolución de este problema?. Recomiéndanos en Facebook o Google+ utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo.

[sociallocker]Media Móvil Ponderada[/sociallocker]

Cómo utilizar una Regresión Lineal para realizar un Pronóstico de Demanda

El Método de Mínimos Cuadrados o Regresión Lineal se utiliza tanto para pronósticos de series de tiempo como para pronósticos de relaciones causales. En particular cuando la variable dependiente cambia como resultado del tiempo se trata de un análisis de serie temporal.

En el siguiente artículo desarrollaremos un Pronóstico de Demanda haciendo uso de la información histórica de venta de un producto determinado durante los últimos 12 trimestres (3 años) cuyos datos se observan en la siguiente tabla resumen:

tabla-datos-regresion-linea

La ecuación de mínimos cuadrados para la regresión lineal es la que se muestra a continuación donde β0β1 son los parámetros de intercepto y pendiente, respectivamente:

ecuacion-regresion-lineal

Estimar los valores de dichos parámetros es sencillo haciendo uso de una planilla Excel tal como muestra la tabla a continuación:

calculo-regresion-lineal-co

Luego evaluamos en las ecuaciones presentadas anteriormente para obtener los valores de β0 y β1:

resultados-parametros-regre

Una vez obtenido los parámetros de la regresión lineal se puede desarrollar un pronóstico de demanda (columna color naranja) evaluando en la ecuación de la regresión para los distintos valores de la variable independiente (x).

Por ejemplo, para el primer trimestre el pronóstico es: Y(1)=441,71+359,61*1=801,3.

Observación: los valores de los pronósticos han sido redondeados arbitrariamente a un decimal para mayor comodidad.

regresion-lineal-tabulada-e

Notar que con la información que hemos obtenido podemos calcular el MAD y la Señal de Rastreo y utilizar estos indicadores para validar la conveniencia de utilizar este procedimiento como dispositivo de pronóstico.

Adicionalmente puede resultar de interés consultar el artículo Ejemplo de una Regresión Lineal Múltiple para un Pronóstico con Excel y Minitab que muestra cómo abordar el caso de realizar una regresión lineal con más de una variable independiente (explicativa).

Siguiendo con nuestro análisis a continuación podemos desarrollar un pronóstico de demanda para los próximos 4 trimestres (un año) que corresponden a los trimestres 13, 14, 15 y 16:

  • Y(13)=441,71+359,61*13=5.116,64
  • Y(14)=441,71+359,61*14=5.476,25
  • Y(15)=441,71+359,61*15=5.835,86
  • Y(16)=441,71+359,61*16=6.195,47

Si bien el procedimiento anterior es válido puede ser resumido haciendo uso de las herramientas de análisis de datos de Excel o simplemente realizando un ajuste de una regresión lineal en un gráfico de dispersión de la misma forma que abordamos en el articulo sobre el Método de Descomposición. Para ello luego de realizar el gráfico nos posicionamos en una de las observaciones y luego botón derecho del mouse para seleccionar «Agregar línea de tendencia…».

regresion-lineal-grafico-di

Luego en la interfaz de Excel activamos las opciones «Presentar ecuación en el gráfico» y «Presentar el valor R cuadrado en el gráfico» (este último indicador según se aborda en los cursos de estadística consiste en una medida de la bondad de ajuste de la regresión).

Notar que los valores obtenidos para los parámetros de la regresión son similares salvo menores diferencias por efecto de aproximación.

regresion-lineal-ajustada-e

Otra opción disponible para ajustar una Regresión Lineal haciendo uso de Excel es a través del Complemento llamado Herramientas para análisis.

Su activación es simple: en el menú Archivo (esquina superior izquierda en Excel) ir a Opciones, luego Complementos, a continuación a la derecha de donde dice Complementos de Excel presionar Ir… y luego activar la Herramientas para análisis.

herramienta para análisis excel

Una vez activada las Herramientas para análisis, se puede encontrar ésta abajo del complemento Solver en el menú de Datos.

análisis de datos excel

Luego de las opciones disponibles que nos ofrece este complemento seleccionamos Regresión.

regresión análisis de datos

A continuación seleccionamos el Rango Y de entrada las celdas correspondientes a la variable dependiente (Ventas) y en Rango X de entrada las celdas correspondientes a la variable independiente (Trimestre).

Debemos activar adicionalmente la casilla Residuos si deseamos obtener un pronóstico para las ventas del Trimestre 1 al Trimestre 12 (junto al cálculo del error o residuo de la estimación).

interfaz regresión análisis de datos

Finalmente presionamos Aceptar lo que generará una nueva hoja en nuestra planilla de cálculo.

Un extracto de los resultados es el que se presenta a continuación, donde en color celeste se destaca los coeficientes asociados a los parámetros de la regresión lineal β0 y β1, respectivamente, y en color naranjo el pronóstico obtenido para cada uno de los doce trimestres al utilizar la ecuación de la regresión.

Por ejemplo: Y(1)=441,67+359,61*1=801,28. El residuo o error correspondiente para dicho período (Trimestre 1) es: e_{1}=A_{t}-F_{t}=600-801,28=-201,28.

resultados análisis regresión

¿Quieres tener el archivo Excel con el ajuste de la Regresión Lineal de este problema?.

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO[/sociallocker]