Cómo lograr un buen desempeño en un curso de Investigación de Operaciones

¿Cómo lograr un buen desempeño en un curso de Investigación de Operaciones?. Esta es una pregunta que usualmente recibimos de nuestros usuarios y probablemente te represente. En el Equipo de Gestión de Operaciones estamos convencidos que esto depende de varios factores y en este artículo te compartiremos nuestra visión al respecto.

1. Participa activamente en la sala de clases: Te recomendamos ser un ente activo del proceso de enseñanza. Si tienes dudas de las materias que el docente este explicando no dejes de preguntar. De seguro tu profesor no tendrá problemas en explicar nuevamente algo que no haya quedado suficientemente claro.

estudiante preguntando

2. Apoya tus estudios con un libro guía: Disponer de un texto guía es una gran ayuda cuando se requiere profundizar en un aspecto teórico de las materias y adicionalmente para revisar casos y ejercicios resueltos. Si cursas un curso introductorio de Investigación de Operaciones te recomendamos conseguir un libro que cubra las principales temáticas del área como la Programación Lineal, Programación Entera, Programación No Lineal y Cadenas de Markov. En nuestra experiencia docente te recomendamos los siguientes textos que los puedes adquirir a precios económicos: Investigacion de Operaciones – Hillier y Lieberman y Investigación de Operaciones, Taha 7° Edición.

3. Explota el potencial de Excel: El tamaño (cantidad de variables de decisión y restricciones) de los modelos de optimización que te sean asignados en clases son generalmente para un fin académico y por tanto no deberías tener inconvenientes en poder implementarlo en Solver o What’sBest!. En nuestro Blog podrás encontrar una serie de artículos que hemos dedicado a estas poderosas herramientas de resolución.

excel_logo

4. Descarga el Libro de Apuntes de Programación Lineal: Nuestro objetivo es ser un apoyo para tus estudios formales de Gestión e Investigación de Operaciones y en este contexto hemos desarrollado un libro de apuntes de programación lineal el cual podrás descargar de forma gratuita si nos recomiendas en las redes sociales.

ecover pl formulario

ecover pl formulario

5. Accede a Recursos Gratuitos para la Investigación de Operaciones: Te recomendamos leer nuestro artículo 7 Recursos Gratuitos para el estudiante de Investigación de Operaciones donde podrás encontrar datos útiles para tus estudios.

Esperamos que estos consejos te ayuden a lograr el objetivo de aprender y en consecuencia aprobar las materias de Investigación de Operaciones.

Cómo resolver un modelo de Programación Lineal con What’sBest!

En el siguiente tutorial mostraremos Cómo resolver un modelo de Programación Lineal con What’sBest!. Para ello por supuesto se requiere previamente descargar e instalar What’sBest! como complemento de Excel tal cual lo explicamos paso a paso en un artículo previo.

Para mostrar cómo utilizar este programa utilizaremos el Problema de Transporte que consiste en determinar una política de distribución que minimice los costos de la logística, al mismo tiempo que satisface la demanda de los clientes y respeta la capacidad de los oferentes.

La información se resume en el siguiente diagrama para un caso particular de 2 plantas y 3 clientes, donde los números sobre las flechas representan los respectivos costos unitarios de transporte entre una planta y un cliente.

Problema de Transporte

Los pasos para implementar este problema de programación lineal en What’sBest! son:

Paso A: Definir las Variables de Decisión: Para ello debes previamente definir en un planilla Excel las celdas que utilizarás como variables. En el ejemplo la Xij: Unidades transportadas desde la planta i al cliente j. Con i=1,2 y j=1,2,3 se tienen 6 variables de decisión.

variables-whatbest

Importante: Completa las celdas que serán variables de decisión con cero como se muestra en la imagen anterior. Luego selecciona el rango de celdas que corresponde a las variables del modelo y presiona «Make Adjustable».

Paso B: Definir la Función Objetivo: Como el nombre lo indica, ésta celda corresponde al objetivo del problema de optimización que en este caso es minimizar los costos totales de transporte. La celda contiene una fórmula SUMAPRODUCTO(C3:E4;C12:E13) previamente ingresa que pondera los costos unitarios de transporte para las distintas combinaciones (datos o parámetros) y las variable de decisión previamente definidas. Finalmente nos posicionamos sobre la celda de la función objetivo y seleccionamos en este caso «Minimize».

fobj-whatbest

Paso C: Definir las Restricciones: Se incorporan las restricciones del modelo de optimización, es decir, las condiciones que deben cumplir las variables de decisión al momento de la resolución. Para ello se selecciona en el menú la opción «Constraints».

En la imagen a continuación se muestra cómo se incorporó la restricción que garantiza que la cantidad de unidades enviadas por cada planta (L.IZQ) no supere (<=) la capacidad de la misma (L.DER). Como se puede apreciar se incorporan las restricciones de capacidad de la planta 1 y 2 en forma simultanea.

restricciones-wb

Finalmente para proceder a la  resolución del modelo seleccionamos la opción «Solve» del menú:

solve-wb

Luego de lo cual se obtienen los siguientes resultados:

solucion-wb

Solución Básica Factible Óptima: X11=80.000; X12=40.000; X13=0; X21=0; X22=30.000; X23=90.000. El Valor Óptimo (mínimo costo) es de $940.000. Para descargar el archivo Excel con la resolución del modelo de transporte con What’sBest! sigue los pasos a continuación:

[sociallocker]Descarga Aquí: https://www.gestiondeoperaciones.net/wp-content/uploads/2013/02/PTWB.xlsx[/sociallocker]

Cómo descargar e instalar la versión de Prueba de What’sBest! 11.1 en Excel 2010

What’sBest! es un excelente complemento para Excel que nos permite resolver modelos de optimización lineales, no lineales, enteros y probabilísticos (estocásticos) a través de una interfaz fácil e intuitiva. Este programa es altamente recomendado tanto para estudiantes como profesores del área de la Investigación de Operaciones y está disponible en una versión gratuita de prueba.

El siguiente tutorial muestra cómo, paso a paso, descargar e instalar la versión de prueba de What’sBest! 11.1 si eres usuario de Excel 2010. (Si tienes otro sistema operativo y/o versión de Excel este tutorial de seguro también te servirá).

Paso 1: Verificar el sistema operativo que utilizas y la cantidad de bits asociados. What’sBest! es compatible con Windows 2000, XP, Vista, Windows 7 y Windows 8. En este caso mostraremos cómo activar el complemento en un computador que utiliza Windows 7 Home Premium con un sistema operativo de 64 bits. Para verificar esta configuración ingresa a tu computador a Equipo y luego a Propiedades del sistema.

propiedades-sistema
En la información del Sistema podrás identificar la cantidad de bits asociados a tu sistema operativo según se muestra en la siguiente imagen:

sistema-operativo

Paso 2: Ingresa a la sección de descarga de What’sBest! en la página web de su desarrollar Lindo, empresa con base en Chicago, Estados Unidos, con más de 21 años de experiencia en el desarrollo de software y aplicaciones para la optimización y apoyo a la toma de decisiones. Luego de acceder al enlace de descarga deberás seleccionar la versión del programa compatible con tu sistema operativo y tu versión de Excel.

version-whatsbest

Paso 3: Completar el formulario para obtener el archivo con el programa. Los campos con asterisco (*) son obligatorios.

formulario-whatsbest

Una vez completado lo anterior de forma correcta y luego presionar «Submit» obtendrás un mensaje que indicará que se ha enviado a tu correo electrónico un enlace de descarga de la versión de What’sBest! que hayas seleccionado.

download-whatsbest

Paso 4: Ingresa a tu correo electrónico (el que proporcionaste al completar el formulario). Deberías haber recibido un email de LINDO Systems Inc con el enlace para descargar el programa tal como se muestra a continuación. (Se han ocultado con franjas negras información confidencial y con rojo el enlace de descarga). Selecciona el enlace de descarga y se comenzará a bajar a tu computador el programa que viene en un archivo comprimido en formato ZIP.

link-descarga-wb

Paso 5: Una vez completada la descarga (por defecto el archivo se guardará en la sección Descargas de tu computador) abre el archivo ZIP y luego ejecuta el archivo setup.exe a su interior como se muestra en la siguiente imagen:

winrar-whatsbest

Esto iniciará la aplicación de instalación que te guiará en el proceso de activación del software.

instalar-wb

licencia-wb

Paso 6: La instalación se ha completado. En Excel 2010 What’sBest! estará disponible a la derecha del menú Complementos. El programa esta listo para ser utilizado y resolver tus modelos de optimización.

wb-instalado

Ahora que What’sBest! está instalado en tu computador estas listo para resolver un modelo de optimización. En el siguiente artículo te mostramos: Cómo resolver un modelo de Programación Lineal utilizando What’sBest!.

Importante: What’sBest! 12 estará disponible en las próximas semanas y será compatible con Excel 2013 y Excel 365. Te informaremos tan pronto sea lanzada esta nueva versión del software.

Restricción con Precio Sombra Negativo en Programación Lineal

En Programación Lineal, el Precio Sombra se refiere a una tasa de cambio del valor óptimo ante una modificación marginal del lado derecho de una restricción, entendiendo como marginal una modificación que permita mantener las actuales restricciones activas para el problema (se conserva la base óptima). En este tipo de análisis se asume que el resto de los parámetros del modelo permanecen constantes.

En artículos anteriores hemos analizado Cómo calcular el Precio Sombra de una Restricción Gráficamente y en forma complementaria Cómo interpretar los Informes de Sensibilidad de Restricciones de Solver de Excel. Esto sin duda es una buena base conceptual para entender el significado del Precio Sombra de una restricción.

En esta oportunidad nos referiremos a una situación que a priori podría parecer anómala, pero que definitivamente no lo es: que una restricción asociada a un modelo de Programación Lineal tenga un Precio Sombra negativo.

Para ilustrar este escenario utilizaremos nuevamente el Modelo de Transporte el cual se representa esquemáticamente a continuación:

Problema de Transporte

La resolución computacional de este modelo utilizando Solver de Excel se resume a continuación:

solución modelo de transporte

Notar que la Planta 1 tiene un exceso de capacidad de 40.000 unidades (diferencia entre su capacidad de 160.000 y las 120.000 unidades que despacha).

Por el contrario la Planta 2 funciona a máxima capacidad (despacha 120.000 unidades). El Informe de Sensibilidad de restricciones reporta lo siguiente:

precio sombra negativo

La restricción de capacidad de la Planta 2 tiene un Precio Sombra negativo de magnitud -1. Esto significa que si se incrementa en una unidad la capacidad de la Planta 2 (a 120.001 unidades) el nuevo valor óptimo será 939.999.

Análogamente, cualquier cambio en la capacidad de la Planta 2 en el intervalo [120.000-40.000,120.000+40.000]=[80.000,160.000] generará una modificación del valor óptimo del problema proporcional al Precio Sombra de la restricción de capacidad de dicha planta.

Por ejemplo, si la capacidad de la Planta 2 aumenta a 130.000 unidades, el nuevo valor óptimo será:

V(\bar{P})=V(P)+\Delta b\cdot \pi =940.000+(130.000-120.000)\cdot -1=930.000

Por el contrario, si la capacidad de la Planta 2 disminuye a 110.000 unidades, el nuevo valor óptimo es:

V(\bar{P})=V(P)+\Delta b\cdot \pi =940.000+(110.000-120.000)\cdot -1=950.000

¿Por qué se produce este fenómeno?. Básicamente por una reasignación debido a que resulta ser relativamente más conveniente generar despachos desde la Planta 2 en comparación a la Planta 1 (que tiene capacidad ociosa y por tanto un Precio Sombra igual a cero).

Problema de Producción e Inventario resuelto con Solver de Excel

La Programación Lineal nos permite abordar distintos problemas de naturaleza real algunos de los cuales ya hemos tratado en artículos anteriores como el Problema de Transporte, el Problema de Mezcla de Productos y el Problema de la Dieta.

En el siguiente artículo analizaremos otra aplicación clásica conocida como el Problema de Producción e Inventario cuyas extensiones y variantes se pueden consultar adicionalmente en la categoría del Plan Maestro de la Producción.

El Problema de Producción e Inventario consiste básicamente en determinar una política de producción en el tiempo que permita satisfacer ciertos requerimientos de demanda, respetando las limitantes de producción y a un costo mínimo.

Este tipo de modelos se puede extender para varios productos, sin embargo, en esta oportunidad consideraremos un solo producto para su ilustración.

En este contexto, consideremos los siguientes antecedentes de producción que se presentan a continuación:

producción e inventario

Luego, definimos el siguiente modelo de optimización lineal:

Supuesto: se dispone de un inventario inicial de 50 unidades, es decir, I0=50.

1. Variables de Decisión:

  • Xt: Unidades a producir en el mes t (t=1,..,6 con t=1 => Enero; t=6 => Junio)
  • It: Unidades a almacenar en inventario al final del mes t (t=1,..,6 con t=1 => Enero; t=6 => Junio)

2. Función Objetivo: Minimizar los costos de producción (destacados con color azul) y costos de inventario (destacados con color rojo) durante el período de planificación definido por:

60X1 + 60X2 + 55X3 + 55X4 + 50X5 + 50X6 + 15I1 + 15I2 + 20I3 + 20I4 + 20I5 + 20I6

De forma compacta (parametrica) se puede representar la función objetivo como:

Minimizar\sum_{t=1}^{6}[C_{t}\cdot X_{t}+H_{t}\cdot I_{t}]

Donde C_{t} es el costo unitario de producción en el mes t (por ejemplo C_{1}=60) y H_{t} es el costo unitario de almacenar unidades en inventario durante el mes t (por ejemplo H_{1}=15)

3. Restricciones:

a) Satisfacer los requerimientos de demanda (conocida como restricción de Balance de Inventario).

Por ejemplo, el inventario disponible al final del mes de Enero será el resultado de la producción del mismo mes, más el inventario inicial (que se asume un dato, en este caso 50 unidades) menos la demanda satisfecha durante el mes de Enero.

  • X1 + 50 – I1 = 100 (Enero)
  • X2 + I1 – I2 = 130 (Febrero)
  • X3 + I2 – I3 = 160 (Marzo)
  • X4 + I3 – I4 = 160 (Abril)
  • X5 + I4 – I5 = 140 (Mayo)
  • X6 + I5 – I6 = 140 (Junio)

Notar que la restricción se Balance de Inventario impuesta para un producto se puede generalizar como: X_{t}+I_{t-1}-I_{t}=d_{t}, donde d_{t} representa la demanda estimada (parámetro) para el mes t.

b) Respetar la capacidad máxima de producción mensual (oferta).

Se establece que la oferta o producción máxima mensual no puede superar la capacidad de producción.

X1<=120   X2<=120   X3<=150   X4<=150   X5<=150   X6<=150

O simplemente X_{t}\leq O_{t} donde O_{t} es la capacidad de producción máxima del mes t (parámetro).

c) Condiciones de no negatividad.

De forma natural y dada nuestra definición cada variable de decisión debe ser no negativa.

Xt >= 0    It >= 0  Para todo t

El siguiente tutorial muestra cómo implementar este Modelo de Producción e Inventario correspondiente a la Programación Lineal en Solver de Excel:

La solución óptima se muestra a continuación con un valor óptimo de $43.450. Se puede apreciar que se producen en total 780 unidades entre Enero y Junio las cuales junto al inventario inicial de 50 unidades permiten satisfacer los requerimientos de demanda mensualmente.

solución problema producción e inventario

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?.

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]