Problema de Asignación aplicado a un Portal de Anuncios de Trabajos

En el siguiente artículo abordaremos un caso aplicado respecto a una situación real donde un sitio web de búsqueda de empleos en España desea determinar qué anuncios publicar en una zona preferente de exhibición dentro de su portal. Para ello será necesario formular y resolver un modelo de Programación Entera que corresponde a un caso particular del problema de asignación descrito en artículos anteriores.

Consideramos como premisa que existen más anuncios que espacios publicitarios y por tanto se debe decidir cuáles de ellos incorporar con el objetivo de maximizar el retorno de la asignación pero al mismo tiempo satisfacer una serie de criterios adicionales que se deseen imponer. Una representación de la situación descrita se resume en la tabla a continuación:

tabla-portal-empleos

Por ejemplo el Aviso N°1 corresponde a un anuncio de trabajo en Madrid en la Categoría I, el cual fue publicado hace 15 días (antigüedad) y que provee un retorno estimado de 100 unidades monetarias. Por supuesto los datos son ficticios, no obstante, permite visualizar la extensión de esta problemática a una situación de esta naturaleza. Asumiremos adicionalmente que se desean cumplir las siguientes condiciones en la asignación:

  1. Seleccionar un Máximo de 5 Anuncios (entre los 10 candidatos posibles).
  2. El tiempo promedio de Publicación de los Anuncios que se seleccionen no debe superar los 7[días].
  3. Por razones estratégicas se debe publicar al menos un Anuncio de Madrid.
  4. Se impone un máximo de 2 Anuncios de la Categoría II.
  5. Se impone un mínimo de 1 Anuncio de la Categoría I.
  6. Se impone un mínimo de 1 Anuncio de la Categoría II.
  7. Se impone un mínimo de 1 Anuncio de la Categoría III.

Un modelo de Programación Entera que permite encontrar una asignación para la situación descrita es el siguiente:

Variables de Decisión: Permite dar respuesta al problema de selección de anuncios publicitarios a incluir en la zona preferente. (i=1,…,10)

variable-decision-asignacio

Función Objetivo: Maximizar el retorno total de la asignación, donde Ri es el retorno (en U.M.) asociadas al anuncio i.

funcion-objetivo-maximizaci

Restricciones: Satisfacer las condiciones expuestas. Se detallan a continuación en el mismo orden en el que fueron detalladas. (Ti representa el tiempo de publicación (en días) del anuncio i).

restricciones-asignacion-po

Al implementar computacionalmente el problema con Solver de Excel se obtiene la siguiente solución óptima que otorga un valor óptimo de 465[U.M]. Con ello la empresa debería implementar los anuncios 1, 4, 5, 6 y 8.

solucion-optima-asignacion-

Aprueba tu Examen con el Libro de Apuntes de Programación Lineal

¿Te gustaría disponer de un Apunte con ejercicios resueltos explicados de modo sencillo que te permita aprobar tu Examen de Programación Lineal?

El Libro de Apuntes de Programación Lineal que necesitas esta aquí y ha sido diseñado especialmente para aquellos alumnos que se encuentran cursando una cátedra inicial de Investigación de Operaciones (o Investigación Operativa) que buscan resolver de forma sencilla aquellas preguntas frecuentes relacionadas a los modelos de optimización lineales.

ecover pl formulario

El material contenido en este Apunte es original, es decir, no ha sido tomado de libros o apuntes de terceros. Para ello hemos desarrollado una labor creativa en el diseño de los ejercicios que estamos seguros sabrás apreciar.

El Libro de Apuntes contiene los siguientes capítulos:

Beneficios

beneficios-ebook

Eso no es todo!

Por la compra del Apunte recibirás GRATIS un archivo Excel con Ejercicios de Programación Lineal resueltos con Solver de Excel.

¿Quieres tener el archivo PDF con el Libro de Apuntes de Programación Lineal?

[sociallocker]MUCHAS GRACIAS!. DESCARGA AQUÍ EL APUNTE DE PROGRAMACIÓN LINEAL[/sociallocker]

Nuestros Usuarios nos Respaldan

Desde Febrero de 2012 el Libro de Apuntes de Programación Lineal ha sido descargado por más de 57.000 100.000 usuarios de distintos países los cuales se han mostrados muy satisfechos por el material recibido. Esto ha permitido consolidar nuestro sitio web como una de las principales referencias sobre la Gestión de Operaciones e Investigación de Operaciones para estudiantes.

Ejemplo del Problema del Camino Más Corto en Programación Entera

El Problema del Camino más Corto (o ruta más barata) consiste en encontrar una ruta o camino óptimo entre un nodo fuente y un nodo destino, los cuales están enlazados a través de una red con arcos que poseen un cierto atributo, el cual puede ser costo, distancia, tiempo, etc.

La Programación Entera permite abordar de forma eficiente este tipo de problemas, en especial cuando la cantidad de nodos y rutas posibles resulta ser un número significativo. Utilizar en estos casos un enfoque intuitivo de resolución es tedioso y de no ser exhaustivo no garantiza la identificación de la mejor alternativa o ruta.

Consideremos el siguiente diagrama donde los números asignados a cada uno de los arcos representan la distancia en kilómetros de un nodo a otro. Se desea encontrar la ruta con la distancia mínima para ir del nodo 1 al nodo 8.

diagrama-ruta-mas-corta

El tamaño reducido de la red anterior permite encontrar el camino más corto simplemente enumerando las distintas alternativas que comenzando en el nodo 1 permita llegar al nodo 8. De esta forma las rutas posibles son:

  • Ruta 1-2-5-7-8: 4+8+17+9=38[km]
  • Ruta 1-3-4-7-8: 3+12+20+9=44[km]
  • Ruta 1-3-4-6-8: 3+12+2+22=39[km]
  • Ruta 1-3-4-8: 3+12+15=30[km]
  • Ruta 1-3-6-8: 3+4+22=29[km]

La ruta o camino más corto esta dada por la secuencia 1-3-6-8 con una distancia total de 29[km].

A continuación se formula un modelo de Programación Entera que permite extender este tipo de resultados a un problema de estas características:

Variables de Decisión:

variable-binaria-ruta-mas-c

Función Objetivo: Minimizar la distancia total en [km] dada por la siguiente expresión:

funcion-objetivo-ruta-mas-c

Restricciones:

restricciones-ruta-mas-cort

  1. La primera restricción (1) garantiza que sólo un nodo (entre el 2 y el 3) pueda ser el que se visita a continuación de comenzar en el nodo 1.
  2. La restricción (2) determina que si se visito el nodo 2 después del nodo 1, entonces necesariamente el nodo 5 será visitado después del nodo 2.
  3. La restricción (3) permite verificar que si el nodo 3 fue visitado luego del nodo 1, entonces a continuación se visita el nodo 4 o el nodo 6 (sólo uno de ellos).
  4. La restricción (4) establece que si el nodo 5 fue visitado luego del nodo 2, entonces el nodo 7 debe ser visitado luego del nodo 5.
  5. La restricción (5) garantiza que si el nodo 4 fue visitado luego del nodo 3, entonces a continuación se visita uno de los siguientes nodo: 7, 8 o 6.
  6. La restricción (6) indica que si el nodo 6 fue visitado inmediatamente luego de estar en el nodo 3 o 4, a continuación se visita el nodo 8.
  7. La restricción (7) determina que si el nodo 7 fue visitado inmediatamente luego de estar en el nodo 4 o 5, a continuación se visita el nodo 8.
  8. Finalmente la restricción (8) asegura que ya sea el nodo 7, 4 o 6 sea el último en visitar previo a terminar la ruta en el nodo 8.

Al implementar en Solver el problema del Camino más Corto o Ruta Mínima anterior se alcanzan los siguientes resultados:

solucion-optima-ruta-mas-co

Donde se corrobora que la ruta más corta (solución óptima) corresponde al camino 1-3-6-8 con una distancia total de 29[km] (valor óptimo).

El tutorial a continuación disponible en nuestro canal de Youtube muestra en detalle la implementación y resolución computacional de este problema:

Formulación un modelo de Programación Entera para un Plan Maestro de la Producción (PMP)

La Planificación Agregada y el Plan Maestro de la Producción (PMP o MPS según sus siglas en inglés Master Production Schedule) son metodologías ampliamente utilizadas hoy en día en empresas de manufactura para planificar las necesidades de producción de una serie de productos, de modo de responder a un pronóstico de demanda a través de los recursos productivos que se disponen.

En este contexto, la evidencia empírica muestra que existen diversas estrategias que se pueden utilizar para enfrentar la demanda, cada una de las cuales se puede valorar en términos de costos pero también a través de una serie de criterios cualitativos que por su naturaleza son difíciles de estimar en una unidad monetaria.

A continuación se presenta un gráfico con el Pronóstico de Demanda de un producto para el cual propondremos un modelo de optimización que permita cumplir con dichos requerimientos, minimizando los costos asociados a la utilización de los recursos productivos:

pronostico-demanda-pmp

Se puede apreciar que la demanda presenta una estacionalidad marcada donde al inicio y final del año los valores son menores a la demanda de un mes promedio (7.817 unidades).

En contraste con lo anterior en los meses de Junio, Julio y Agosto se presenta un peak de demanda, superando en magnitud claramente lo que correspondería a la demanda de un mes promedio. Adicionalmente consideremos los siguientes antecedentes de operación:

  • Costo de Contratar un Trabajador: US$1.000
  • Costo de Despedir un Trabajador: US$1.800
  • Costo de Almacenamiento Unitario Mensual: US$10
  • Inventario Inicial: 500 unidades
  • Costo Remuneración (Sueldo) de un Trabajador al Mes: US$600
  • Número de Trabajadores al Inicio de la Planificación: 100
  • Unidades de Producto producidas por un Trabajador al Mes: 50

La pregunta inmediata es: ¿Cómo responder a la demanda pronosticada durante el período de planificación al menor costo posible?. Algunas posibles respuestas son:

Fuerza Laboral Exacta: Esto es mediante contratación y despido de trabajadores para responder de forma exacta a las necesidades de cada mes. Con esta alternativa se busca evitar la acumulación de inventario.

Acumulación y Liquidación de Inventario: Producir en mayor volumen en los meses de menor demanda de modo de acumular inventario para enfrentar los requerimientos adicionales de los meses de mayor demanda. Si se considera adecuado se puede utilizar esta alternativa buscando no afectar el tamaño de la fuerza laboral.

Por cierto también se puede utilizar una estrategia mixta o híbrida que mezcle por ejemplo características de las 2 opciones presentadas anteriormente. Este enfoque generalmente es el que permite alcanzar menores costos.

Adicionalmente cabe destacar que en un Plan Maestro de la Producción (PMP) se podrían considerar otras alternativas o variables de ajuste no consideradas en este ejemplo como la utilización de trabajadores en tiempo extraordinario, la subcontratación parcial de la producción, la eventual postergación de demanda, entre otras opciones.

Luego, en relación a los antecedentes de operación previamente detallados, un modelo de Programación Entera para el Plan Maestro de la Producción es:

1. Variables de Decisión:

variables-de-decision-pmp

2. Función Objetivo:

funcion-objetivo-pmp

3. Restricciones:

Satisfacer la Demanda (Balance de Inventario): Donde Dt corresponde a la demanda pronosticada para el mes t (parámetros).

restriccion-demanda-pmp

Balance Mano de Obra: La cantidad de trabajadores en operación en cada período corresponde a los trabajadores disponibles al final del mes anterior, más los contratados y menos los despedidos en el mes en curso.

balance-trabajadores-pmp

Capacidad de Producción: La producción de cada mes se ve limitada por la disponibilidad de trabajadores y el rendimiento mensual (en unidades de producto) que cada uno de éstos tiene.

capacidad-produccion-pmp

No Negatividad e Integralidad: Todas las variables de decisión deben adoptar valores no negativos y adicionalmente ser enteras.

no-negatividad-e-integralid

El modelo anterior se puede implementar con Solver y What’sBest! obteniendo los siguientes resultados:

Implementación Computacional en Solver: Se alcanza una solución factible con valor en la función objetivo de US$1.468.700.

solucion-solver-plan-maestr

El detalle de la resolución la puedes revisar en el siguiente tutorial de nuestro canal de Youtube:

Implementación Computacional con What’sBest!: Se alcanza una solución factible con valor en la función objetivo de US$1.468.400, la cual es ligeramente inferior en costos a la solución obtenida con Solver.

solucion-whatsbest-plan-mae

La carga del modelo en What’sBest! y la obtención de los resultados anteriores se puede revisar en el siguiente tutorial de nuestro canal de Youtube:

[sociallocker]Problema PMP www.gestiondeoperaciones.net[/sociallocker]

Programación No Lineal no Convexo

A diferencia de la Programación Lineal donde sus distintas aplicaciones corresponden a problemas de optimización convexos (situación que facilita la resolución computacional), en Programación No Lineal no existen garantías a priori que permita garantizar que un modelo en particular será un problema convexo.

Es decir, una aplicación de Programación No Lineal puede ser un problema convexo o un problema no convexo.

En este artículo abordaremos a través de un ejemplo sencillo las dificultades prácticas y algorítmicas asociadas a la resolución de un modelo de Programación No Lineal no convexo.

Consideremos el siguiente modelo matemático no lineal con restricciones:

problema-no-lineal-no-conve

Una primera aproximación a su resolución consiste en graficar la función anterior utilizando Geogebra:

grafico-de-funcion-no-conve

Se puede observar que la función es no convexa, constatándose adicionalmente la presencia de mínimos locales (por ejemplo los Puntos B y C) y mínimo global (Punto A).

En este sentido la expectativa que debiéramos tener al implementar este problema computacionalmente es obtener la solución óptima para un valor de x en el intervalo entre [4,5] (por simple inspección) lo que corresponde al Punto A de la gráfica anterior.

Una alternativa de resolución computacional para este problema es utilizar AMPL como lenguaje de programación matemática y MINOS 5.5 como solver de resolución. El código de la implementación y los resultados alcanzados se muestra a continuación:

solucion-ampl-problema-no-c

La solución óptima encontrada por el algoritmo corresponde a x=1 (Punto C) lo que permite alcanzar un valor en la función objetivo igual a cero: f(1)=0. Claramente según nuestro gráfico esta solución corresponde sólo a un mínimo local aun cuando el programa sugiere que es el mínimo global del problema.

Otra alternativa de resolución consiste en la utilización de Solver. En primera instancia el algoritmo converge a la solución x=1 con f(1)=0.

solucion-solver-problema-no

Sin embargo, si manualmente editamos el valor de la celda color amarillo B3 (variable de decisión) a «2» y reoptimizamos con Solver se obtiene lo siguiente:

reoptimizacion-pnl-solver

Se alcanza ahora una nueva solución con x=2,45608774 con f(2,45608774)=-1,41869663 lo que corresponde al Punto B de nuestro gráfico y que si bien corresponde a un mínimo local provee un valor menor en la función objetivo al ser comparado con el Punto C. En este contexto resulta razonable considerar el valor «4» para la celda cambiante como punto de partida para una nueva reoptimización:

reoptimizacion-2-pnl-solver

Ahora obtenemos lo que correspondería al mínimo global del problema (Punto A) con solución óptima x=4,64443285 y valor óptimo f(4,64443285)=-3,63143221.

Finalmente hemos resuelto el problema con What’sBest! donde en el siguiente tutorial de nuestro canal de Youtube mostramos los detalles de la implementación:

Luego de reoptimizar sobre la solución local alcanzada en primera instancia se obtiene el mínimo global del problema (Punto A):

solucion-whatsbest-problema

Conclusiones: Las principales dificultades enfrentadas al intentar resolver un modelo de Programación No Lineal no convexo es no tener la certeza si la solución obtenida a través de una herramienta computacional corresponde a un mínimo local o mínimo global.

Con las herramientas presentadas en este artículo fue necesario reoptimizar sobre soluciones obtenidas en primera instancia  para encontrar la solución óptima del problema. Cabe destacar que en este ejemplo al disponer de una representación gráfica del problema sabíamos de antemano cuál era la solución del problema lo cual nos permitía contrastar los resultados computacionales. En este sentido claramente un modelo de mayor complejidad (por ejemplo, un mayor número de variables de decisión y/o restricciones) una aproximación intuitiva no tiene sentido práctico.

En este contexto una de las principales áreas actuales de desarrollo de la Investigación de Operaciones es proveer de métodos numéricos de resolución que permita abordar de forma eficiente la complejidad de esta categoría de problemas de optimización.