Elección y Construcción del Gráfico de Control apropiado en el Control Estadístico de Procesos (CEP)

Los gráficos de control son una de las principales herramientas del Control Estadístico de Procesos (CEP o su equivalente en inglés Statistical Process Control (SPC)). De forma previa a la construcción de un gráfico de control, se sugiere seguir de forma secuencial una serie de pasos de modo de poder analizar en detalle los procesos. En el contexto anterior a continuación detallamos algunos criterios para la elección y construcción del gráfico de control adecuado para su proceso:

1. Analizar la característica de calidad de la que se desea hacer el gráfico: es importante destacar que el control estadístico de los procesos sirve tanto para procesos productivos como para servicios, por lo que la característica de calidad puede ser el diámetro de la tapa de un frasco de vidrio, el tiempo que tardamos en resolver un reclamo de un cliente, el porcentaje de boletas erróneas o el número de visitas necesarias hasta poner en funcionamiento una determinada aplicación.

2. Elegir el tipo de gráfico de control apropiado: la primera decisión es cuándo utilizar gráficos de variables o de atributos. Un gráfico de variables se utiliza para controlar características medibles, en tanto que un gráfico de atributos se utiliza en una inspección del tipo pasa o no pasa. Al respecto el complemento SPC for Excel permite generar de forma rápida y sencilla gráficos de atributos y variables como se muestra en la siguiente imagen:

spc-for-excel

3. Elegir los estadísticos para la línea central del gráfico y la base para calcular los límites de control: normalmente se utiliza la media de los datos recogidos para la línea central. Los límites de control estadístico se obtienen (usualmente) sumando y restando tres veces una estimación de la desviación estándar al valor central. Por ejemplo, a continuación se muestra una Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos (gráfico de variables para el promedio muestral).

grafica-promedios-control-e

4. Elegir una muestra: el término muestra es el normalmente utilizado, si bien muestra puede significar un solo valor, y si es posible, es aconsejable utilizar muestras de más de un valor en los gráficos de control. Se deben seleccionar las muestras de tal forma que la probabilidad de un cambio en el proceso se minimice durante la toma de la muestra (por eso se debe utilizar una muestra pequeña), en tanto que la probabilidad de un cambio, si va a ocurrir, es máxima entre dos muestras consecutivas. Esto es el concepto de tomar subgrupos racionales. En consecuencia es mejor tomar pequeñas muestras periódicamente que una única muestra grande.

muestreo-estadistico-calida

5. Diseñar un sistema para recoger los datos: si buscamos que los gráficos de control sean una herramienta útil, la toma de datos debe ser simple y relativamente libre de error.

6. Calcular los límites de control y dar instrucciones adecuadas a todos los involucrados en el gráfico de control sobre su significado y la interpretación de sus resultados: examinar las condiciones de fuera de control y eliminar las causas especiales (asignables) de variación. Una vez que el proceso esté bajo control, fijar los límites y continuar analizando el proceso hasta que se produzca un cambio.

El siguiente diagrama esquemático muestra los criterios a considerar para seleccionar el gráfico de control adecuado:

eleccion-tipo-control-estad

Los beneficios más importantes al utilizar los gráficos de control y el control estadístico de los procesos:

  1. Los gráficos de control son una herramienta efectiva para entender la variabilidad de los procesos y ayudan a alcanzar el control estadístico. En este sentido entrega información confiable de cuando se debería ajustar el proceso y cuando no.

  2. Cuando un proceso está bajo control estadístico, su rendimiento será predecible. En consecuencia, tanto el productor como el cliente, serán conscientes de los niveles de calidad de los productos o servicios.

  3. Un proceso bajo control estadístico puede ser mejorado a través de la reducción de la variabilidad natural o aleatoria.

  4. Los gráficos de control proporcionan un lenguaje común para comunicar información sobre el rendimiento de los procesos.

  5. Los gráficos de control, al permitir diferenciar entre las causas de variación asignables y las aleatorias, proporcionan una buena indicación sobre si los problemas pueden resolverse de forma local, o requerirán de la intervención de la alta dirección de la empresa.

Cómo Calcular Cp y Cpk con el Complemento SPC for Excel

El Cálculo de los índices Cp y Cpk en el Control Estadístico de Procesos permite evaluar que tan bien el proceso se apega a las especificaciones técnicas deseadas o equivalentemente determinar si el proceso cumple el objetivo funcional para el cual fue diseñado. En el siguiente artículo mostraremos cómo obtener de forma rápida y sencilla dichos indicadores haciendo uso del complemento SPC for Excel, el cual puede ser descargado en el enlace anterior por un período de prueba de 20 días. Una vez que el complemento SPC for Excel haya sido correctamente descargado y activado será visible en en una de las pestañas del menú de Excel como se muestra (en un extracto) a continuación:

menu-spc-for-excel

Para ilustrar su utilización consideremos la información relativa a un proceso del cual se tienen 15 muestras, cada una de ellas con 4 observaciones, donde se ha registrado la información de las lecturas en OHMS de cierto dispositivo electrónico. La especificación nominal o deseada del dispositivo es de 1.000 OHMS y se permite una variabilidad de +- 25 OHMS con lo cual se definen los límites de especificación.

datos-para-calculo-de-cp-y-

A continuación seleccionamos la opción Cpk del menú de SPC for Excel (visible en la imagen anterior) y seleccionamos el rango de los datos. Notar que en el ejemplo la información cuantitativa de las muestras esta contenido en el rango que conforma la matriz de la celda C3 a la F17 (es decir, 60 celdas: 15 filas y 4 columnas). Adicionalmente ingresamos el Límite de Especificación Inferior (LEI) o Lower Specification Limit (LSL) de 975 OHMS (1.000 – 25) y Límite de Especificación Superior (LES) o Upper Specification Limit (USL) de 1.025 OHMS (1.000 + 25). Recordar que la especificación nominal es de 1.000 OHMS.

capacidad-del-proceso-spc

Una vez ingresados los datos atingentes al ejemplo y habilitando los resultados de capacidad (en su opción Yes) seleccionamos OK. Esto dará origen a una nueva hoja en nuestro archivo Excel con los resultados del análisis de capacidad tal como se muestra a continuación:

cp-y-cpk-spc-para-excel

Observar que los resultados son consistentes con los alcanzados preliminarmente en el artículo al cual hacemos referencia al inicio de este tutorial. Adicionalmente se obtienen una serie de estadísticas complementarias que permite tener una visión más general del comportamiento del proceso.

calculo-cp-y-cpk-control-es