Problema de Arriendo de Buses para Transporte de Pasajeros en Programación Lineal

El siguiente problema de Programación Lineal consiste en determinar una política óptima de arriendo de buses para el transporte de pasajeros que minimice los costos asociados a su arriendo y satisfaga los requerimientos de transporte y otras condiciones adicionales que se deseen imponer.

El Centro de Alumnos de Ingeniería Industrial de una respetada universidad desea celebrar el día del alumno en la playa. Este paseo está planificado para 1.200 alumnos como mínimo. Una empresa de transporte ofrece 2 tipos de buses pero solo cuenta con 28 conductores. La tabla de abajo indica la capacidad y el costo de arriendo de cada tipo de bus:

costo-arriendo-buses

Para mantener el equilibrio de su flota,  la empresa de transporte impone la condición de que el número de buses tipo B arrendados no puede exceder el número de buses tipo A arrendados. Formule y resuelva un modelo de Programación Lineal que permita determinar cuántos buses de cada tipo hay que arrendar para el paseo de modo que resulte lo más económico para el Centro de Alumnos.

Variables de Decisión:

x: Cantidad de Buses Tipo A arrendados
y: Cantidad de Buses Tipo B arrendados

Función Objetivo:

Minimizar 80.000x+110.000y

Restricciones:

Cantidad de Alumnos: 40x+60y\geq 1.200
Cantidad de Conductores: x+y\leq 28
Condición de Flota: x-y\geq 0
No Negatividad: x,y\geq 0

El dominio de soluciones factibles del problema esta dado por el polígono ABC según se detalla a continuación (representación gráfica realizada con el software Geogebra). En particular la solución óptima corresponde al vértice A donde x=12y=12, con valor óptimo V(P)=80.000*12+110.000*12=2.280.000.

dominio-de-factibilidad-bus

Notar que si bien el problema fue modelado como uno de Programación Lineal, dadas las características del problema sería deseable obtener una solución entera para las variables de decisión (dado que no es posible arrendar una fracción de buses y asumir por ejemplo que el costo del mismo es proporcional a la capacidad ocupada). No obstante en el ejemplo propuesto la solución óptima obtenida cumple de forma natural con las condiciones de integralidad, lo que indica que sus resultados son idénticos al problema de Programación Entera asociado (es decir, aquel al cual se le agregan de forma explícita las condiciones de enteros para las variables de decisión).

De forma complementaria al análisis anterior se pueden responder las siguientes preguntas correspondientes al análisis de sensibilidad o postoptimal:

informe-de-confindencialida

1. Determine cuánto podría variar el costo de arriendo del Bus tipo A que conserve la solución óptima. Si C1 (costo arriendo del Bus tipo A) varía en el intervalo entre [73.333,3 , ∞[ se conserva la actual solución óptima.

2. Determine el impacto en el valor óptimo del problema si se elimina la condición que el número de buses tipo B arrendados no puede exceder el número de buses tipo A arrendados. El precio sombra de la restricción de condición de flota es 4.000. Luego si se elimina la condición de flota la solución óptima se alcanza en la mínima variación (x,y)=(0,20) para una reducción permisible del lado derecho de dicha restricción en 20 unidades. Luego el nuevo valor óptimo es V(P)=2.280.000+(-20-0)*4.000=2.200.000.

Cómo enfrentar una Solución Infactible obtenida con el Método Húngaro

En algunos casos los ceros que se producen en los Pasos 1 y 2 del Método Húngaro no producen una solución factible en forma directa, es decir, la asignación alcanzada es infactible. En este caso se necesitan más pasos para alcanzar la asignación óptima (factible). Para ilustrar esta situación consideremos el siguiente ejemplo que consiste en la asignación a costo mínimo de 4 ingenieros a 4 tareas, donde cada ingeniero debe desempeñar exactamente una tarea:

ingenieros-y-tareas

Al aplicar los Pasos 1 y 2 del Método Húngaro se obtiene la siguiente matriz reducida:

ejemplo-metodo-hungaro

Notar que los elementos cero (marcados con color azul) no permiten asignar una tarea por ingeniero. Por ejemplo, si se asigna el ingeniero 1 a la tarea 1, se eliminará la columna 1, y el ingeniero 3 no tendrá elemento cero en las tres columnas restantes. Para solucionar este obstáculo se agrega el siguiente paso al procedimiento:

Paso 2a: Si no se puede asegurar una asignación factible (con todos los elementos cero) con los Pasos 1 y 2.

  • Trazar la cantidad mínima de líneas horizontales y verticales en la última matriz reducida que cubran todos los elementos cero.

  • Seleccionar el elemento mínimo no cubierto, restarlo de todo elemento no cubierto y a continuación sumarlo a todo elemento en la intersección de dos líneas.

  • Si no se puede encontrar una asignación factible entre los elementos cero que resulten, repetir el Paso 2a. En caso contrario, seguir en el Paso 3 para determinar la asignación óptima.

Al aplicar el Paso 2a a la matriz reducida presentada anteriormente, se obtienen las celdas color amarillo según se aprecia a continuación:

paso-2a-metodo-hungaro

La celda de valor mínimo sin fondo amarillo es igual a $1 (destacada con color rojo). Este elemento se resta de todas las celdas sin fondo amarillo y se suma a a las celdas de las intersecciones (destacadas con color azul).

resultado-metodo-hungaro

La solución óptima (por cierto factible) se ha marcado con fondo azul: el ingeniero 1 realiza la tarea 1, el ingeniero 2 la tarea 3, el ingeniero 3 la tarea 2 y el ingeniero 4 la tarea 4 . El costo total (valor óptimo) de esta asignación es $1+$10+$5+$5=$21.

Método del Costo Mínimo (Algoritmo de Transporte en Programación Lineal)

El Método del Costo Mínimo determina una mejor solución básica factible inicial que el Método de la Esquina Noroeste debido a que se concentra en las rutas menos costosas.

De esta forma el Método del Costo Mínimo se inicia asignando lo máximo posible a la celda que tenga el mínimo costo unitario (en caso de empates, éstos se rompen de forma arbitraria). A continuación, la fila o columna ya satisfechos de tacha, y las cantidades de oferta y demanda se ajustan en consecuencia. Si se satisfacen de forma simultanea una fila y una columna, sólo se tacha uno de los dos (de forma idéntica que el Método de la Esquina Noroeste). Luego se busca la celda no tachada con el costo unitario mínimo y se repite el proceso hasta que queda sin tachar exactamente una fila o una columna.

Consideremos nuevamente el Problema de Transporte donde se desea satisfacer la demanda de 4 molinos a través de los envíos de 3 silos, donde los valores en la esquina superior derecha de cada cuadro c_{ij} representan los costos unitarios de transporte desde el silo i al molino j.

ejemplo-esquina-noroeste

Fe de Erratas: En la imagen dice Molino 1, 2, 3 y 5 (columnas). Debería decir: Molino 1, 2, 3 y 4.

La aplicación del Método de Costo Mínimo al problema de transporte anterior da origen a la siguiente solución factible de inicio:

solucion-costo-minimo

Los pasos aplicados para llegar a dichos resultados se resumen a continuación:

  • La celda x_{12} tiene el menor costo unitario, por tanto se asigna lo máximo posible (15 unidades correspondiente a la oferta del silo 1). Con x_{12}=15 se satisface tanto la demanda del molino 2 como la oferta del silo 1. Se tacha de forma arbitraria la columna 2.

  • Ahora la celda x_{31} tiene el mínimo costo unitario sin tachar. Se asigna x_{31}=5 y se tacha la columna 1 porque quedó satisfecha (lo cual deja una capacidad remanente del silo 3 de 5 unidades).

  • Al continuar de este modo, se asignan en forma sucesiva 15 unidades a la celda x_{23}, 0 unidades a la celda x_{14} (la capacidad del silo 1 ya fue asignada), 5 unidades a la celda x_{34} y 10 unidades a la celda x_{24}.

La solución básica factible de inicio resultante con 6 variables básicas es: x_{12}=15, x_{14}=0, x_{23}=15, x_{24}=10, x_{31}=5, x_{34}=5 la cual reporta un valor en la función objetivo (costo) de Z=15(2)+0(11)+15(9)+10(20)+5(4)+5(18)=$475 que efectivamente es una mejor solución inicial que la obtenida por el Método de la Esquina Noroeste (que provee un valor de $520 al ser evaluado en la función objetivo) pero por cierto no es la solución óptima según se aprecia en la siguiente imagen que resume la implementación computacional del problema en Solver.

solucion-solver-transporte-

El Método Húngaro como Algoritmo de Solución del Modelo de Asignación

Un caso típico de un modelo de asignación es aquel que considera la asignación de trabajadores de distintos niveles de capacitación a puestos de trabajo. Naturalmente un puesto que coincide con los conocimientos de un trabajador cuesta menos que uno en el que el trabajador no es tan hábil. El objetivo del modelo es determinar la asignación de costo mínimo de trabajadores a puestos.

Consideremos un problema con n trabajadores que deben ser asignados a n puestos de trabajo. Sea x_{ij} el costo de asignar al trabajador i al puesto j. Asumamos adicionalmente que cada trabajador debe realizar exactamente un trabajo. Notar que no existe pérdida de generalidad en asumir que la cantidad de trabajadores es igual a la cantidad de puestos, porque siempre se pueden agregar trabajadores o puestos ficticios para obtener esa condición.

El Método Húngaro consta de los siguientes pasos:

Paso 1: En la matriz original de costo, identificar el mínimo de cada fila y restarlo de todos los elementos de la fila.

Paso 2: En la matriz que resulte del Paso 1, identificar el mínimo de cada columna, y restarlo de todos los elementos de la columna.

Paso 3: Identificar la solución óptima como la asignación factible asociada con los elementos cero de la matriz obtenida en el Paso 2.

A continuación presentaremos un ejemplo que muestra la aplicación del Método Húngaro que nos permite decidir la asignación de trabajadores a puestos de trabajo.

Ejemplo Método Húngaro

Un equipo de 3 ingenieros debe ser asignado para la realización de 3 tareas, donde cada ingeniero debe hacer una tarea. Se requiere encontrar la asignación de costo mínimo para lo cual se dispone de los costos asociados a que el ingeniero i realice la tarea j. Por ejemplo, c_{11}=15 representa el costo correspondiente a que el ingeniero 1 asuma la tarea 1.

tabla-ingenieros-y-tareas

Aplicar el Método Húngaro para encontrar una asignación óptima de los ingenieros a las tareas.

El Paso 1 del Método Húngaro requiere identificar el valor mínimo de cada fila. En el caso de la fila 1 dicho valor es $9 siendo el costo de que el ingeniero realice la tarea 3. En particular si se dispone de un problema de mayor tamaño, hacer uso de Excel facilita los cálculos tal como se muestra en la siguiente imagen:

minimo-fila-hungaro

A continuación se resta el mínimo de cada fila a cada uno de los valores de la fila respectiva, para obtener la matriz reducida:

matriz-reducida-metodo-hung

La aplicación del Paso 2 produce los mínimos de cada columna según se observa en la tabla anterior. Al restar esos valores de las columnas respectivas se obtiene la siguiente matriz reducida:

solucion-metodo-hungaro

Las celdas con valor cero y color azul son la solución óptima. En consecuencia el ingeniero 1 realiza la tarea 2, el ingeniero 2 asuma la tarea 1 y el ingeniero 3 la tarea 3. Cada ingeniero realiza exactamente una tarea y el costo total de dicha asignación (valor óptimo) es de $9+$10+$8=$27. Los pasos presentados del Método Húngaro para el ejemplo anterior funcionaron bien debido a que los elementos cero de la matriz anterior permite una asignación factible de ingenieros a tareas (en el sentido que las tareas se asignan de forma única a los ingenieros). No siempre esto es posible lograr una solución factible en la aplicación caso en el cual se requiere pasos adicionales para la aplicación del método.

Método de Aproximación de Vogel (Algoritmo de Transporte en Programación Lineal)

El Método de Aproximación de Vogel es una versión mejorada del Método del Costo Mínimo y el Método de la Esquina Noroeste que en general produce mejores soluciones básicas factibles de inicio, entendiendo por ello a soluciones básicas factibles que reportan un menor valor en la función objetivo (de minimización) de un Problema de Transporte balanceado (suma de la oferta = suma de la demanda).

Los pasos que requiere la aplicación del Método de Aproximación de Vogel son los siguientes:

Paso 1: Determinar para cada fila (columna) una medida de penalización restando el elemento de costo unitario mínimo en la fila (columna) del elemento con costo unitario siguiente al mínimo de la misma fila (columna).

Paso 2: Identificar la fila o columna con la mayor penalización. Romper los empates (de existir) de forma arbitraria. Asignar todo lo posible a la variable que tenga el mínimo costo unitario de la fila o columna seleccionada. Ajusta la oferta y la demanda y tachar la fila o la columna ya satisfecha. Si se satisfacen una fila y una columna en forma simultánea, sólo se tacha uno de los dos y al que queda se le asigna oferta o demanda cero.

Paso 3:

  • Si queda sin tachar exactamente una fila o columna con cero oferta o demanda, detenerse.

  • Si queda sin tachar una fila (columna) con oferta (demanda) positiva, determinar las variables básicas en la fila (columna) con el Método del Costo Mínimo. Detenerse.

  • Si todas las filas y columnas que no se tacharon tienen cero oferta y demanda (restante), determinar las variables básicas cero por el Método del Costo Mínimo. Detenerse.

  • En cualquier otro caso, seguir en el Paso 1.

Ejemplo Método de Aproximación de Vogel

Consideremos nuevamente un problema de transporte balanceado que tiene 3 fuentes de oferta (silos) y 4 fuentes de demanda (molinos). Los valores numéricos en la esquina superior derecha de cada cuadro, en adelante c_{ij} representan el costo unitario de transporte desde el silo i al molino j. Por ejemplo c_{11}=10 es el costo unitario de transporte desde el silo 1 al molino 1.

ejemplo-esquina-noroeste

Según lo descrito anteriormente el primer paso consiste en calcular el factor de penalización para cada fila y columna de la tabla que representa el problema de transporte anterior. Por ejemplo, en la fila 1 el mínimo costo es $2 y y el costo unitario siguiente al mínimo es $10. En consecuencia la penalización de dicha fila es $8 ($10-$2). Se replica el mismo cálculo para cada fila y columna de la tabla lo cual es trivial y reporta los siguientes resultados (se han marcado las penalizaciones de las respectivas filas y columnas con color naranjo para mayor claridad):

penalizacion-metodo-de-voge

Como la fila 3 tiene la máxima penalización ($10) y la celda correspondiente a x_{31} tiene el costo unitario mínimo de esa fila, se asigna 5 unidades a x_{31} (más no es necesario aún cuando la capacidad del silo 3 lo permite dado que la demanda del molino 1 es de sólo 5 unidades). Con esto la columna 1 se debe tachar (lo hemos marcado con color amarillo) y se procede a calcular las nuevas penalizaciones como se aprecia a continuación:

metodo-de-vogel

Ahora la penalización máxima es $9 ($11-$2) lo cual se alcanza en la fila 1. En consecuencia se asigna la máxima cantidad posible a la variable x_{12}, con lo que se obtiene x_{12}=15, y al mismo tiempo se satisfacen tanto la fila 1 como la columna 2. En forma arbitraria se tacha la columna 2 y se ajusta a cero la oferta en la fila 1.

Al continuar de la misma forma, ahora la fila 2 es la que produce la máxima penalización correspondiente a $11 ($20-$9), por tanto se asigna x_{23}=15, con lo que se tacha la columna 3 y quedan 10 unidades en la fila 2. Sólo queda la columna 4 y tiene 15 unidades de oferta positiva. Al aplicar el Método del Costo Mínimo a esa columna, se asigna de forma sucesiva x_{14}=0, x_{34}=5, x_{24}=10 (se recomienda verificar dichos resultados). Notar adicionalmente que hay otras soluciones posibles que dependen de cómo se rompen los empates.

El valor de la función objetivo asociado a esta solución factible inicial es Z=15(2)+0(11)+15(9)+10(20)+5(4)+5(18)=$475 que es similar a lo alcanzado por el Método del Costo Mínimo, no obstante, en general el Método de Aproximación de Vogel reporta mejor solución de inicio.