Algoritmo del Plano de Corte en el Problema del Vendedor Viajero

Según lo descrito en el artículo Solución del Problema del Vendedor Viajero, una de las situaciones potenciales a la que nos podemos enfrentar es que la solución de asignación obtenida represente un subcircuito, lo cual naturalmente no da respuesta a la problemática que el modelo de agente viajero desea abordar. En este contexto existen diversas estrategias algorítmicas que permiten enfrentar esta situación entre las cuales destaca el Algoritmo de Plano de Corte.

La idea del Algoritmo del Plano de Corte es agregar un conjunto de restricciones que, cuando se incorporan al Problema de Asignación garanticen evitar la formación de un subcircuito. Consideremos un problema con n ciudades, asociar una variable continua u_{j}\geq 0 con las ciudades 2,3,…,n. A continuación definir un conjunto de restricciones adicionales de la siguiente forma:

restricciones-plano-de-cort

Estas restricciones al añadirse al Modelo de Asignación, eliminarán todas las soluciones de subcircuito de forma automática, pero no eliminarán alguna solución de circuito.

A modo de ejemplo consideremos nuevamente el problema de secuenciamiento de la producción donde nos interesa determinar el orden en el cual se deben producir 4 colores de pintura.

tabla-tiempos-setup-pintura

A continuación se define un modelo de optimización haciendo uso del lenguaje de programación matemática AMPL. Para ello se puede utilizar un editor de texto como Bloc de Notas o WordPad. La siguiente imagen muestra la sintaxis utilizada en la definición del modelo del ejemplo propuesto donde se incorpora las restricciones que evitan los subcircuitos. Notar que es importante guardar el archivo con el formato adecuado (.mod) para lo cual simplemente en el caso de utilizar Bloc de Notas seleccionamos «Archivo», seguido de «Guardar como …» y luego en «Nombre» se ingresa un nombre arbitrario seguido de .mod (por ejemplo, modelo.mod).

modelo-ampl-plano-de-corte

El siguiente paso es generar un nuevo archivo con los datos o parámetros del problema. Básicamente aquellos que resumen el tiempo (en minutos) necesarios para la limpieza al realizar un cambio de colores, según se describe al inicio de este artículo. Notar que para evitar aquellas asignaciones infactibles (como que a un color le precede el mismo en la secuencia) se asignan «constantes grandes» a los elementos en la diagonal. El archivo se procesa y guarda de forma similar al caso del modelo pero con la extensión .dat (por ejemplo, matriz.dat).

datos-ampl-plano-de-corte

Finalmente será necesario construir un tercer archivo con extensión .run que provee de instrucciones adicionales para efectos de la resolución computacional y que facilita la interpretación de los resultados (por ejemplo, solucion.run).

solucion-run-ampl-plano-de-

Una vez definido el modelo, datos y archivo run, podemos utilizar un solver de Programación Entera Mixta de los disponibles en el Servidor NEOS. En particular recomendamos utilizar el solver XpressMP donde se deberá adjuntar los archivos con extensión .mod, .dat y .run (respectivamente) según se muestra a continuación (recordar que el nombre asignado al archivo es arbitrario, no así su extensión).

xpressmp-neos

Luego seleccionamos «Submit to NEOS» y los resultados se mostraran en el navegador de Internet, además de recibir un informe de respuestas en la dirección de correo electrónico que ingresamos. La siguiente imagen muestra un extracto de dichos resultados:

solucion-ampl-plano-de-cort

Notar que XpressMP encuentra como recorrido óptimo la secuencia 1-2-4-3-1, es decir, corresponde a producir en el siguiente orden: Blanco, Amarillo, Rojo, Negro, con un tiempo total de setup de 98 minutos.

Solución del Problema del Vendedor Viajero

El Problema del Vendedor Viajero (conocido también como Travelling Salesman Problem o simplemente TSP) consiste en encontrar el circuito óptimo (en términos del viaje más corto) que deberá seguir un vendedor en un caso con n ciudades, en el que cada ciudad se visita exactamente una vez. Básicamente es una adaptación del Problema de Asignación que considera restricciones adicionales que garantiza la exclusión de subcircuitos en la solución óptima.

Específicamente en el caso de n ciudades se define las variables de decisión de la siguiente forma:

variables-vendedor-viajero

Sea d_{ij} la distancia de la ciudad i a la ciudad j, donde d_{ij}=\infty, el modelo del agente o vendedor viajero corresponde a:

modelo-vendedor-viajero

El conjunto de restricciones (1) y (2) definen un modelo de asignación tradicional. Lamentablemente en general, el problema de asignación producirá soluciones de subcircuito más que circuitos completos que abarque las n ciudades.

Para ilustrar los conceptos de circuito y subcircuito en el contexto del Problema del Vendedor Viajero, consideremos un agente de venta que vive en la ciudad 1. Miami (Florida) en Estados Unidos y debe visitar a importantes clientes en las siguientes ciudades: 2. Chicago (Illinois), 3. Houston (Texas), 4. Las Vegas (Nevada) y 5. San Francisco (California). Para mayor claridad se han destacado los estados mencionados anteriormente con un color distintivo.

problema-del-vendedor-viaje

Un circuito factible sería viajar en el siguiente orden: Miami (FL), Chicago (IL), Houston (TX), Las Vegas (NV), San Francisco (CA), Miami (FL). Es decir, x_{12}=x_{23}=x_{34}=x_{45}=x_{51}=1.

Por otra parte un subcircuito correspondería, por ejemplo, a Miami (FL), San Francisco (CA), Las Vegas (NV), Miami (FL), junto a Houston (TX), Chicago (IL), Houston (TX). Es decir, x_{15}=x_{54}=x_{41}=x_{32}=x_{23}=1, lo que naturalmente no es una solución factible para el problema que se busca resolver.

El modelo del vendedor viajero se caracteriza por su versatilidad para representar otros casos prácticos en optimización. Uno de ellos es el Problema de Secuenciamiento de la Producción como el que se presenta a continuación:

El programa de producción diaria de una empresa de pinturas incluye lotes de color Blanco (B), Amarillo (A), Negro (N) y Rojo (R). Como la empresa utiliza las mismas instalaciones en las cuatro clases de pintura, es necesario hacer una limpieza entre los lotes. La siguiente tabla resume el tiempo de limpieza, en minutos, donde al color de la fila sigue el color de la columna. Por ejemplo, cuando después de la pintura Blanca sigue la Amarilla, el tiempo de limpieza en 10 minutos. Como un color no puede seguir a sí mismo, a los elementos correspondientes se les asigna un tiempo de setup infinito. Se desea determinar la secuencia óptima para la producción diaria de los cuatro colores, que minimice el tiempo total de limpieza necesario.

tabla-tiempos-setup-pintura

Se puede hacer una analogía con el problema del vendedor viajero, asumiendo que cada pintura es una «ciudad» y que las «distancias» representan el tiempo de limpieza necesario para cambiar de un lote de pintura al siguiente. En consecuencia, el problema se reduce a determinar el circuito más corto que se inicie en un lote de pintura y pase exactamente una vez por cada uno de los tres lotes restantes, para regresar al punto de partida.

En este contexto dada la cantidad de pinturas, la secuencia óptima se puede encontrar por enumeración exhaustiva de los 6 circuitos posibles (n-1)!, es decir, (4-1)!=3!=6. En el ejemplo dicha secuencia óptima corresponde a Blanco, Amarillo, Rojo, Negro, Blanco, con un tiempo total de setup de 98 minutos. Naturalmente esta estrategia no es eficiente y queda limitada a problemas muy pequeños.

secuencia-de-produccion

Alternativamente se puede utilizar implementar en Solver el modelo de asignación presentado anteriormente, haciendo uso de los parámetros descritos en el ejemplo del secuenciamiento de la producción de pinturas. A continuación un extracto de los resultados donde se observa que no se alcanza una solución de circuito.

solucion-tsp-solver

celdas-no-convergen-tsp

En la actualidad existen programas computacionales que permiten enfrentar estas dificultades que establece el problema del vendedor viajero. Uno de ellos es el software TSPSG (TSP Solver and Generator) que se caracteriza por una interfaz intuitiva y que a continuación se detalla la implementación de nuestro problema (recordar que la Ciudad 1 correspondería al color Blanco, y así sucesivamente).

tsp-solver

Una vez ingresado los datos al seleccionar «Solve» el programa se ejecuta entregando los resultados alcanzados que por cierto coincide con aquellos que identificamos por enumeración.

solucion-tsp-tspsg

En términos algorítmicos los métodos disponibles para resolver el problema del agente o vendedor viajero tienen su base en las ideas de los algoritmos generales de ramificación y acotamiento (Branch and Bound) o de Plano de Corte, en los cuales abordaremos en próximos artículos.