Cómo hacer un Diagrama de Pareto con Excel 2010

El Diagrama de Pareto consiste en una representación gráfica de los datos obtenidos de un problema que resulta de utilidad para identificar cuáles son los aspectos prioritarios que se deben enfrentar. En este contexto se espera el cumplimiento de la Regla de Pareto que empíricamente indica que aproximadamente el 80% de los problemas se explica por aproximadamente el 20% de las causas (notar que la Regla de Pareto se aplica adicionalmente en otros ámbitos y que por cierto los porcentajes anteriores son aproximaciones).

En el siguiente artículo desarrollamos a través de un ejemplo la confección de un Diagrama de Pareto haciendo uso de Excel en su versión de Office 2010, no obstante, resulta ser bastante genérico como instructivo en caso que estemos utilizando otra versión de Office.

Para ello consideremos la observación de un proceso de manufactura de computadores donde se lleva registro de todas las causas (se han identificado 10) que generan un rechazo en el control de calidad durante el horizonte de evaluación.

tabla-diagrama-de-pareto

Por ejemplo la Causa 1 ha representado un total de 182 defectos (de un total de 355 defectos detectados) lo que corresponde a un 51,27% del total (182/355=0,5127). Notar que en conjunto la Causa 1 y Causa 2 representan un 80,28% del total (285/355=0,8028) lo cual aproxima de forma cercana el cumplimiento de la regla empírica de Pareto. A continuación una descripción detallada del procedimiento en Excel para la confección del Diagrama de Pareto.

Paso 1: Seleccionamos los datos de las columnas «Causas», «N° Defectos» y «% Total Acum.». A continuación en el Menú «Insertar» seleccionamos gráfico de «Columna», luego en las opciones disponibles en «Columna en 2-D» la alternativa «Columna agrupada».

paso-1-diagrama-pareto

Paso 2: Al completar el Paso 1 se generará un diagrama de barra como el que se muestra en la imagen a continuación. Luego debemos seleccionar cuidadosamente el eje horizontal (que representan el % Total Acum.) y posteriormente procedemos a «Cambiar tipo de gráfico».

paso-2-diagrama-pareto

Paso 3: Se desplegará una ventana que permite cambiar el tipo de gráfico donde debemos seleccionar «Línea» y «Aceptar».

paso-3-diagrama-pareto

Paso 4: Una vez concluido el Pase 3 obtendremos un gráfico como el que se muestra en la siguiente imagen. Seleccionamos con doble clic cualquiera de los datos que representa la serie de línea «% Total Acum.» (en el ejemplo el dato correspondiente a la Causa 9).

paso-4-diagrama-de-pareto

Paso 5: En la ventana «Formato de serie de datos» en «Opciones de serie» seleccionamos «Eje secundario» y luego «Cerrar». Se debería obtener un gráfico como el que se muestra a continuación.

paso-5-diagrama-pareto

Paso 6: Nuestro Diagrama de Pareto ha sido confeccionado y debería ser de la siguiente forma:

paso-6-diagrama-de-pareto

Opcionalmente se pueden hacer algunos cambios adicionales como, por ejemplo, dejar la etiqueta de datos al pie del gráfico y ajustar la escala del eje vertical de porcentajes de modo que el máximo valor sea un 100%.

diagrama-de-pareto

Una vez concluida la construcción del Diagrama de Pareto la interpretación de los datos se facilita, donde se observa tanto la frecuencia absoluta asociada a cada causa (que gatilla en un defecto) como también la contribución relativa acumulada que generan determinadas causas en el total de los defectos.

Notar adicionalmente que es imprescindible realizar un diagrama de causas (por ejemplo, el Diagrama de Espina de PescadoDiagrama de Ishikawa) si se quieren realizar mejoras. De esta forma se puede intervenir el Proceso Productivo en aquellos aspectos que están causando un desempeño deficiente y que se ve traducido en la calidad desmejorada del producto.

A continuación el enlace de descarga del archivo Excel utilizado en este artículo: Excel Diagrama de Pareto y un vídeo de nuestro canal de Youtube con el detalle de la implementación computacional:

Adicionalmente dejamos a disposición de nuestros usuarios la siguiente plantilla Excel la cual puede ser editada y ver los cambios asociados en la forma del Diagrama de Pareto:

¿Quieres tener el archivo Excel con el Diagrama de Pareto de este Ejemplo?

[sociallocker]

MUCHAS GRACIAS!. DESCARGA AQUÍ EL ARCHIVO

[/sociallocker]

Cómo Resolver Gráficamente un Modelo de Programación Lineal con TORA

El software TORA es una excelente herramienta para resolver de forma intuitiva distintos modelos y aplicaciones de la Investigación Operativa. TORA está incluido en un CD (Compact Disc) adjunto al libro Investigación de Operaciones de Hamdy Taha y es compatible aún con las últimas versiones disponibles de Windows. Al respecto en el siguiente artículo se muestra su uso en un computador con sistema operativo Windows 7 Home Premium de 64 bits. para abordar la pregunta Cómo Resolver Gráficamente un Modelo de Programación Lineal con TORA. Adicionalmente el libro de Investigación de Operaciones de Hamdy Taha puede ser adquirido en sus versiones en español e inglés a precios convenientes desde distintos portales de comercio electrónico como Amazon.

Luego de su instalación y previo a su utilización es necesario realizar un ajuste a la resolución de pantalla seleccionando alguno de las 2 opciones recomendadas: 800×600 o 1024×786 pixeles (en realidad en este último caso 1024×768 como se podrá observar abajo). Para ello se debe ir al Panel de Control.

configurar-resolucion-tora

A continuación seleccionamos la resolución 1024×768 pixeles y Aplicar.

resolucion-monitor

Luego se despliega una ventana que nos solicita confirmar nuestra selección anterior. En este caso debemos Conservar Cambios.

conservar-cambios-resolucio

Una vez que el cambio en la resolución de pantalla ha sido ejecutado abrimos el programa TORA y se procede seleccionando el botón Click Here.

tora

Una vez en el menú principal podemos seleccionar un importante número de funcionalidades relativas a la Investigación Operativa que se tratan en el libro de Hamdy Taha y donde TORA resulta ser un excelente complemento para el aprendizaje de los estudiantes. En esta oportunidad mostraremos cómo resolver un modelo de Programación Lineal por ello seleccionamos la opción Linear Programming.

menu-tora

En el menú que se despliega ingresamos el nombre o título del problema, la cantidad de variables y restricciones (aquellas adicionales a las de no negatividad).

variables-y-restricciones-t

En este tutorial utilizaremos el mismo ejemplo que implementamos en el artículo Cómo Resolver Gráficamente un Modelo de Programación Lineal con IORTutorial, un problema que tiene 2 variables de decisión y 5 restricciones (donde 2 de ellas son las de no negatividad).

modelo-lineal-cambio-lado-d

Luego se completan los parámetros de la grilla con la información relativa al ejemplo que nos interesa resolver tal como se observa en la siguiente imagen:

input-grid-tora

Una vez ingresados los datos del problema se selecciona Solve Menu, Solve Problem y Graphical.

solve-tora-grafico

En la ventana a continuación se nos pide confirmar la cantidad de decimales. En este caso mantendremos los valores que ofrece el programa por defecto y seleccionamos Go To Output Screen.

opciones-salida-tora

Finalmente llegamos a la interfaz que permite realizar una representación gráfica del modelo lineal. Para graficar las restricciones se debe seleccionar cada una de ellas de forma individual y finalmente marcar la función objetivo que mostrará el desplazamiento de la curva de nivel que permite alcanzar la solución óptima y valor óptimo (visible en la esquina inferior izquierda de la siguiente imagen). En próximos artículos seguiremos mostrando funcionalidades adicionales de TORA, hasta entonces.

solucion-grafica-tora

Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17

En el siguiente tutorial mostraremos cómo hacer un gráfico de promedios y un gráfico de rangos en el contexto del Control Estadístico de Procesos (CEP) utilizando el software estadístico Minitab 17. Para tal propósito utilizaremos los mismos datos del Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos que desarrollamos en un artículo previo. Cabe destacar que cualquier diferencia entre el artículo de referencia y los resultados que se observan en el vídeo a continuación obedecen sólo a criterios de aproximación de decimales.

Vídeo disponible en nuestro Canal de Youtube en https://youtu.be/ghNlFTjrjBo

Minitab 17 genera las gráficas de control de forma automática, las cuales podemos comparar con las que se pueden obtener haciendo uso de Excel.

promedios-y-rangos-minitab-

grafica-promedios-control-e

grafica-rangos-control-esta

El proceso del ejemplo se encuentra bajo control estadístico. Notar que los resultados de cada muestra tanto del gráfico de promedio como rangos se encuentran dentro de los límites de control. No obstante llama la atención el aumento de la variabilidad (rangos) de las últimas muestras lo que sugiere mantener un estrecho control sobre el proceso productivo para evitar que éste salga de los límites.

Cambio de Variables como alternativa al Método Simplex de 2 Fases

Una empresa que fabrica tres artículos A, B y C, desea encontrar un Plan de Producción semanal que le permita maximizar sus beneficios netos totales. Los productos son procesados en tres máquinas siendo la producción mínima semanal de 100, 60 y 60 unidades respectivamente. El beneficio neto por unidad vendida de estos artículos son 2, 2 y 4 mil pesos para los artículos A, B y C, respectivamente. Las horas que se necesitan por unidad y máquina son:

maquinas-tiempos-de-producc

Siendo el número de horas disponibles de cada máquina 240, 400 y 360 respectivamente. Formule un modelo de Programación Lineal para abordar el problema propuesto. Resuelva a través del Método Simplex dicho modelo, indicando cuántas unidades de A, B y C se deben fabricar semanalmente y el beneficio final de este plan.

Variables de Decisión: Se debe definir cuántas unidades de cada uno de los 3 productos se fabricarán durante el período de evaluación.

variables-produccion-abc

Función Objetivo: Consiste en maximizar el beneficio neto asociado al plan de producción.

funcion-objetivo-abc

Restricciones: Se debe garantizar que se fabrique los mínimos semanales exigidos para cada producto como también que se respete la disponibilidad de horas máquinas.

restricciones-abc

El problema anterior se puede resolver por el Método Simplex de 2 Fases agregando variables de exceso y auxiliares para cada una de las restricciones que establecen los mínimos semanales de producción. Además se debe agregar variables de holguras para cada una de las restricciones de disponibilidad de horas máquinas. En consecuencia el problema de la Fase 1 tendría 3 variables auxiliares (cuya sumatoria se minimiza en la función objetivo) lo cual genera una instancia de resolución al menos tediosa para este problema (en caso se ser abordada manualmente).

Una alternativa más eficiente de resolución se alcanza al imponer un cambio de variables, lo que permite simplificar las restricciones de mínimos de producción semanal. Sea X=A-100\geq 0, Y=B-60\geq 0Z=C-60\geq 0. Luego A=X+100B=Y+60C=Z+60, obteniendo la siguiente instancia de modelamiento equivalente:

modelo-lineal-con-cambio-de

A continuación llevamos a la forma estándar el modelo anterior, transformando la función objetivo a minimización y agregando s_{1},s_{2},s_{3} como variables de holgura de las restricciones 1, 2 y 3, respectivamente:

forma-estandar-cambio-de-va

Lo que da origen a la siguiente tabla inicial del Método Simplex:

tabla-inicial-forma-estanda

A continuación incorporamos a la base a la variable Z considerando el criterio que favorece la rapidez de convergencia del algoritmo. Luego calculamos el criterio de factibilidad o mínimo cuociente en la columna de la variable Z: Min\begin{Bmatrix}\frac{60}{2}; \frac{180}{1}; \frac{40}{1}\end{Bmatrix}=30, lo que determina que la variable s_{1} deja la base. Se actualiza la tabla realizando una iteración del Método Simplex:

iteracion-1-cambio-de-varia

Se procede a incorporar a la variable X a la base y s_{3} abandona la base dado que Min\begin{Bmatrix}\frac{150}{1}; \frac{10}{2}\end{Bmatrix}=5. Se realiza una iteración adicional que permite alcanzar la siguiente solución básica factible óptima:

solucion-optima-cambio-de-v

La solución óptima es X=5Y=0Z=30 que al remplazar en las variables originales permite obtener A=X+100=5+100=105B=Y+60=0+60=60C=Z+60=30+60=90. Notar que el valor óptimo es V(P)=130+560=690 luego de sumar el valor de la constante 560 al valor obtenido para la función objetivo del problema auxiliar. Se propone al lector corroborar los resultados anterior a través de la aplicación del Método Simplex de 2 Fases que por cierto permite alcanzar idénticos resultados pero con una mayor esfuerzo en la resolución.

Conformación de Equipos de Trabajo a través de la Programación Entera

La Programación Entera provee una alternativa metodológica para enfrentar los Problemas de Asignación en donde una serie de recursos (mano de obra, horas máquinas, materia prima, etc) se deben asignar a uno o más fines (conformar equipos de trabajo, producción, etc). El siguiente artículo aborda el problema que enfrenta una consultora que debe formar 2 equipos de expertos del área de operaciones en base a 8 ingenieros industriales. Estos 2 equipos los puede escoger de entre 5 equipos de profesionales que trabajan en la consultora. Los datos del problema se muestran en la siguiente tabla:

tabla-remuneraciones-ingeni

Cada equipo tiene que estar compuesto por al menos 3 y a lo más 5 expertos. Si el profesional j es asignado al equipo i, la compañía le debe pagar una remuneración rij. Si en la tabla aparece un guion (—), significa que el experto no puede ser asignado a ese equipo: por ejemplo, el profesional 3 no puede pertenecer al equipo 2 ni al 4. Se espera que el equipo i genere un ingreso di.

Se requiere formular y resolver computacionalmente un modelo de optimización que permita determinar la conformación de los equipos, alcanzando la utilidad máxima y cumpliendo las condiciones anteriormente expuestas. Definir claramente las variables de decisión, función objetivo y restricciones.

Variables de Decisión:

variables-problema-asignaci

Función Objetivo:

funcion-objetivo-asignacion

Restricciones:

Sólo 2 equipos se seleccionan:

solo-2-equipos-se-forman

Cada equipo está formado solamente por entre 3 y 5 expertos:

minimo-y-maximo-de-ingenier

A continuación se presenta un extracto de la implementación computacional del problema de conformación de equipos de trabajo con Solver. Notar que aquellas combinaciones infactibles en términos de asignación de ingenieros a equipos ha sido marcado con color rojo y en particular se le ha asignado un costo significativamente mayor en comparación a aquellas asignaciones factibles. De esta forma se espera que estos casos no sean seleccionados (por cierto también se puede seleccionar paso a paso sólo las celdas factibles al momento de definir las variables de decisión en Solver, omitiendo las situaciones infactibles).

solucion-optima-conformacio

La solución óptima consiste en seleccionar el equipo 1 y 5. En la tercera tabla (filas 16 a 21) se muestra la asignación de ingenieros a dichos equipos (por supuesto aquellos equipos que no se conforman, es decir, equipos 2, 3 y 4 no tienen ingenieros asignados). El equipo 1 se compone de los ingenieros 1, 3 y 4; por otra parte el equipo 5 se compone de los ingenieros 1, 3 y 10. Notar que no existe incentivo económico a conformar equipos con un mayor número de integrantes. Finalmente el valor óptimo (utilidad máxima) es de $16.550.

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre “Descarga el Archivo” se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4545″]