Ejemplo de Gráfica de Promedios y Gráfica de Rangos en el Control Estadístico de Procesos

El Control Estadístico de Procesos (CEP) es una metodología que da la confianza estadística de que un componente está dentro de una tolerancia sin tener la necesidad de medir cada componente. Como su nombre lo sugiere es un control del proceso (no del producto) y es un indicador más que una solución. En este contexto la importancia del Control Estadístico de Procesos radica en los siguientes aspectos:

  1. Se utiliza como apoyo al proceso de Control de Gestión.
  2. Consiste en la aplicación de métodos estadísticos a la medición y análisis de la variación en cualquier proceso.
  3. Permite diagnosticar el estado del proceso: Se dice que el proceso está bajo control estadístico (estable) si no presenta señales de que existe alguna causa asignable de variación y en consecuencia representa un proceso predecible. Una causa asignable es detectable y posible de eliminar con una justificación económica.

Las principales herramientas del Control Estadístico de Procesos lo constituyen las cartas de control (de promedios y rangos), las cuales se aplican en el monitoreo de las características de calidad de un producto y detecta cuando el proceso esta fuera de control. A continuación presentaremos un ejemplo que permite la evaluación de si un proceso se encuentra bajo control estadístico mediante la elaboración e interpretación de las gráficas de control de promedios y rangos.

Gráfica de Promedios y Gráfica de Rangos

Una máquina automatizada a alta velocidad fabrica resistores para circuitos electrónicos. La máquina está programada para producir un lote muy numeroso de resistores de 1000 OHMS cada uno, siendo éste el valor ideal para cada resistor y admitiéndose una variación sobre dicho valor de ± 25 OHMS.

Con el fin de ajustar la máquina y crear una gráfica de control para utilizarla a lo largo de todo el proceso, se tomaron 15 muestras con cuatro resistores cada una. La lista completa de muestras y sus valores medidos es la siguiente:

tabla-datos-control-estadis

¿Se encuentran el proceso bajo control estadístico?. Grafique los datos en una gráfica de control de promedio (X) y de rango (R) con los limites de control. Para el cálculo del promedio muestral considere los resultados aproximados a un decimal. Comente e interprete los resultados.

En primer lugar necesitamos calcular los límites de control estadístico para las gráficas de promedio y rango. Para ello se deben considerar las siguientes fórmulas y parámetros:

formulas-limites-de-control
tabla-parametros-control-es

Con esta información procedemos a calcular el promedio y rango de cada una de las 15 muestras. Por ejemplo el promedio de la muestra 1 se obtiene de X1=(1010+991+985+986)/4=993 y el rango R1=1010-985=25 (la diferencia en magnitud de la mayor y menor observación de la muestra). Se replica el procedimiento para el resto de las muestras lo cual se facilita haciendo uso de una planilla Excel según se observa a continuación:

calculo-promedio-y-rango

Finalmente se obtienen los límites de control estadístico los cuales se resumen en la siguiente tabla:

calculo-limites-de-control-

A continuación se grafican los resultados de cada una de las muestras (celdas color amarillo de la planilla anterior) en contrastes con los límites de control.

grafica-promedios-control-e
grafica-rangos-control-esta

  • El proceso se encuentra bajo control estadístico. Tanto en la gráfica de promedios y rangos los resultados de las muestras están dentro de los límites de control. Recomendamos a nuestros usuarios revisar el artículo Gráfico de Promedios y Gráfico de Rangos en el Control Estadístico de Procesos con Minitab 17.

  • En la gráfica de promedios se observa una dispersión aleatoria respecto a la media del proceso aun cuando llama la atención de la media de las muestras 4 y 5.

  • En la gráfica de rangos se observa un leve tendencia creciente a contar de la muestra 9. Si bien las observaciones se mantienen dentro de los límites de control, esta situación se debe tener bajo alerta dado que muestra un aumento en la variabilidad.

Ejemplo del Problema del Flujo Máximo en Programación Entera resuelto con Solver

Este tipo de problemas (Problema del Flujo Máximo) es similar al Problema de Ruta más Corta, pero ahora se busca determinar el flujo máximo entre un nodo fuente y un nodo destino, los que están enlazados a través de una red, con arcos con capacidad finita, tal como se presenta en la siguiente figura. Notar que los números asignados a cada uno de los arcos representan los flujos máximos o capacidades correspondientes a cada arco.

ruta-flujo-maximo

Problema del Flujo Máximo

Desde el punto de vista de la Programación Entera podemos plantear la situación de la siguiente forma:

Variables de Decisión:

variables-flujo-maximo

Función Objetivo: Maximizar las unidades que salen del nodo de origen (1) a los que éste conecta (2, 4 y 5) o alternativamente maximizar las unidades que llegan al nodo de destino (8) desde los que conectan a él (3, 6 y 7).

funcion-flujo-maximo

Restricciones:

Restricciones de Flujo Máximo: La cantidad de unidades que sale de cada nodo de origen a un nodo de destino no puede superar la capacidad detallada en el arco, por ejemplo, del nodo 1 al nodo 2 sólo se pueden enviar 7 unidades.

restricciones-flujo-maximo

Restricciones de Balance de Flujo en los Nodos: Debe existir un equilibrio entre la cantidad de unidades que llega a un nodo y las que de éste salen, por ejemplo el número de unidades que se envía desde el nodo 1 al 4 (si es que así fuese el caso) debe ser igual a lo que desde el nodo 4 se envían al nodo 3 y 6.

balance-flujo-maximo

No Negatividad e Integralidad: Las variables de decisión de decisión deben cumplir las condiciones de no negatividad. Adicionalmente exigiremos que éstas adopten valores enteros aún cuando se podría flexibilizar dicha situación lo que daría origen a un problema de Programación Lineal.

no-negatividad-flujo-maximo

Luego de implementar el modelo de optimización anterior con Solver se alcanza la siguiente solución óptima y valor óptimo:

solucion-flujo-maximo

Notar que el flujo máximo de unidades que puede llegar al nodo de destino son 32 unidades (valor óptimo) donde cualquiera de las funciones objetivos propuestas proporciona el mismo resultado (en particular hemos utilizado la primera de ellas). Los valores de las celdas en color amarillo representan la solución óptima, es decir, la cantidad de unidades que fluyen en cada combinación de un nodo origen destino.

En el siguiente tutorial de nuestro canal de Youtube se detalla la implementación computacional que permite alcanzar los resultados anteriormente expuestos:

¿Quieres tener el archivo Excel con la resolución en Solver de este problema?. Recomiéndanos en Facebook, Google+ o Twitter utilizando la herramienta de redes sociales a continuación y accede de forma gratuita e inmediata a la descarga del archivo (el enlace de descarga con el nombre «Descarga el Archivo» se mostrará abajo una vez que nos hayas recomendado).

[l2g name=»Descarga el Archivo» id=»4352″]

Como resolver un modelo de Programación Lineal con LINGO 14.0

LINGO es un popular software de optimización matemática para uso tanto académico como empresarial desarrollado por LINDO Systems Inc (quienes desarrollaron What’sBest!) que provee una alternativa para enfrentar el problema de modelamiento matemático e implementación computacional en una plataforma distinta a Excel (en contraste a los complementos que han tenido un lugar preferente en nuestro sitio como Solver, Premium Solver Pro, What’sBest! y OpenSolver).

En el siguiente artículo detallaremos cómo descargar e instalar el programa LINGO para luego utilizar éste en la resolución de un modelo de Programación Lineal con 2 variables de decisión. Dado lo anterior consideremos el siguiente problema:

ejemplo-lingo-programacion-

Paso 1: Descarga e instalar la última versión disponible de LINGO desde la sección de descargas del sitio web de LINDO Systems. Se debe tener especial atención en seleccionar de forma correcta la versión compatible con nuestro sistema operativo (Windows o Linux) y la cantidad de bits asociado a dicho sistema. Para verificar este último aspecto te recomendamos leer el artículo “Cómo descargar e instalar la versión de Prueba de What’sBest! 11.1 en Excel 2010”. En dicho artículo se detalla adicionalmente el procedimiento de registro y activación de la licencia.

descarga-lingo

Paso 2: Una vez instalado LINGO en nuestro computador ejecutamos el programa y luego implementamos el modelo de optimización. El software es compatible con distintos tipos de sintaxis las cuales iremos abordando en próximos artículos en el Blog). Por el momento a continuación detallamos una notación intuitiva que nos permite representar nuestro ejemplo:

ejemplo-lingo

Una vez incorporado definido el problema ejecutamos el botón “Solve”:
solve-lindo

Paso 3: Se obtienen los resultados para el modelo. La ventana “Lingo 14.0 Solver Status” detalla las características del problema: LP (Programación Lineal) con Valor Óptimo de 2.025.

lingo-solver-status

El detalle de los resultados se aprecia en el informe de respuestas que genera el programa de forma automática. La salida computacional se muestra a continuación:

analisis-de-sensibilidad-li

La Solución Óptima es A=60 y C=27,5 con Valor Óptimo V(P)=2.025. Notar adicionalmente que los resultados son consistentes con los que obtendríamos de utilizar Solver para este ejemplo y haciendo uso del Informe de Confidencialidad (Sensibilidad).

informe-sensibilidad-del-mo

Con color verde destacamos el precio sombra de cada una de las restricciones del problema. Estos valores se identifican en la columna etiquetada “Dual Price” en el informe de resultados de LINGO en las Filas (Row) 2, 3 y 4, respectivamente.

Una representación gráfica del problema anterior con Geogebra nos permite corroborar los resultados anteriores de forma intuitiva, por ejemplo la restricción C<=50 no está activa, en consecuencia su precio sombra es igual a cero.

solucion-grafica-ejemplo-li

Reglas de Prioridad en la Programación de Trabajos con el Software LEKIN®

LEKIN® es un software gratuito e intuitivo que permite entre otras cosas la programación de n trabajos en una máquina. Este programa fue desarrollado en Stern School of Business, NYU, siendo la mayor parte de su diseño y programación a cargo de estudiantes de la Universidad de Columbia en Estados Unidos. El software LEKIN® fue creado como herramienta educacional con el propósito principal de difundir en los estudiantes conceptos de programación de trabajos y sus aplicaciones en la industria.

En el siguiente artículo detallaremos como implementar la regla de prioridad FIFO (First In First Out) o análogamente en su acrónimo en español PEPS (Primero en Entrar Primero en Salir). Para ello consideraremos un problema que consiste en la programación de 5 trabajos a una máquina, donde los tiempos de proceso son determinísticos (es decir, se asume que no hay incertidumbre respecto a la duración de cada trabajo) y el patrón de llegada es estático (Todos los trabajos llegan simultáneamente y de manera previa al inicio de las operaciones).

tabla-trabajos-con-fecha-de

Paso 1: Descargar el software LEKIN® (seleccionando Lekin.exe (1.67MB) según se muestra en la imagen) y seguir las instrucciones las instrucciones para su instalación.

descargar-lekin

Paso 2: Una vez instalado el programa y dadas las características de nuestro ejemplo, en el Menú Principal debemos seleccionar “Single Machine” (Una Máquina).

main-menu-lekin

Paso 3: A continuación ingresamos la cantidad de trabajos que necesitamos programar. En nuestro ejemplo son 5 trabajos. Luego seleccionamos “OK”.

single-machine-lekin

Paso 4: Ingresamos los datos de los trabajos en la interfaz que se muestra a continuación. Notar que hemos editado el nombre o etiqueta que identifica el trabajo (Job ID) el Tiempo de Procesamiento (Processing Time) y la Fecha de Entrega (Due Date). Al presionar “OK” se puede repetir el procedimiento para el resto de los trabajos.

add-jobs-lekin

Paso 5: En el menú del programa seleccionamos “Schedule” ==> “Rule” ==> “4 FCFS” (FCFS es equivalente a FIFO o PEPS).

fcfs-lekin

LEKIN® genera una Carta Gantt donde se muestra la programación de los trabajos y el tiempo total o makespan para concluir la totalidad de éstos (80 días). Adicionalmente según se aprecia en “Job Pool” se detalla el día en que se da inicio y término a cada uno de los trabajos.

carta-gantt-lekin

Paso 6: Finalmente en el Menú “Tools” (Herramienta) ejecutamos la opción “Performance”.

tools-lekin

Esto permite obtener un cuadro resumen con los principales indicadores de gestión de la programación según se observa en la imagen:

shop-perfomance-lekin

De donde se corrobora los siguientes resultados según lo obtenido previamente en el artículo: Reglas de Prioridad para la Programación de n Trabajos en una Máquina.

  • Tiempo de Flujo Promedio = 245[días]/5[trabajos]=49[días/trabajo]
  • Tiempo de Atraso Promedio = 108[días]/5[trabajos]=21,6[días/trabajo]
  • Atraso Máximo = 40[días]
  • Número de Trabajos Atrasados = 3[trabajos]
  • Makespan = 80[días]

Conclusiones: El software LEKIN® puede ser utilizado tanto para la aplicación de otras reglas de prioridad en el contexto del ejemplo anterior (según se puede apreciar en el Paso 5 de este tutorial) como también en otras problemáticas relativas a la Programación de Tareas. Una de las ventajas del programa es que su distribución es gratuita y además resulta ser compatible aún con las versiones más recientes de Windows (teniendo en cuenta que su última actualización data de Abril de 2002). Lo anterior ha sido corroborado en la utilización de este software sin inconvenientes en un computador con sistema operativo Windows 7 Home Premium de 64 bits. Lo anterior constituye una ventaja en comparación a otras herramientas como WINQSB que requiere el uso de máquinas virtuales si se desea utilizar en versiones recientes del sistema operativo Windows.

Actualización (Febrero 2017): Se dispone de una versión más reciente del software LEKIN® que la utilizada en este tutorial y cuya fecha de actualización corresponde al mes de Octubre de 2010 y puede ser descargada en el siguiente enlace: Descargar LEKIN® (2010).

Problema de Corte Ensamblado y Producción de Sillas resuelto con Solver

Una empresa de Rústicos “El Viejo Baúl” fabrica entre muchos otros productos tres tipos de sillas A, B y C, las cuales se venden a precio de 11, 13 y 12 dólares cada una y respectivamente. Las sillas pasan por tres procesos, Corte, Ensamblado y Pintado, para lo cual se dispone máximo de 17, 13 y 15 horas respectivamente a la semana para dedicar a estas operaciones a estos productos. La silla tipo A requiere 3 horas para corte, 1 hora para ensamblado y 3 horas para pintura. La silla tipo B requiere 1 hora para corte, 4 horas para ensamblado y 3 horas para pintura. Y finalmente la silla tipo C, requiere de 5 horas para corte, 2 para ensamblado y 2 horas para pintura. De acuerdo a la anterior información:

a. Resuelva el problema con variables continuas  y señale los resultados para cada variable.

Variables de Decisión: Se estable el nivel de producción semanal para cada una de las variedades de silla según se detalla a continuación:

variables-decision-sillas

Función Objetivo: Maximizar los ingresos semanales asociados a la producción y venta de las sillas.

funcion-objetivo-sillas

Restricciones: En los procesos de corte, ensamblado y pintura se debe respetar la disponibilidad de horas semanales. Adicionalmente se deben satisfacer las condiciones de no negatividad.

restricciones-sillas

La implementación computacional del problema anterior con Solver de Excel permite alcanzar los siguientes resultados:

solucion-optima-problema-li

Donde la solución óptima es A=1,914286, B=1,828571 y C=1,885714 con valor óptimo V(P)=67,45714.

b. Modifique las condiciones de las variables y elíjalas enteras (integer) y observe el cambio entre la respuesta del punto a y esta nueva hallada.

Al definir las variables de decisión enteras estamos frente a un modelo de Programación Entera (siendo el escenario inicial un problema de Programación Lineal). Los resultados son:

solucion-optima-problema-en

La solución óptima es A=1B=2 y C=2 con valor óptimo V(PE)=61.

c. Concluya qué sucedió entre variables continuas y variables enteras.

Es importante observar que el dominio de soluciones factibles del problema entero (parte b) es un subconjunto del dominio de soluciones factibles del problema lineal (parte a). Por tanto es natural que al no obtener una solución con valores enteros para las variables de decisión en el problema inicial, el valor óptimo necesariamente disminuirá en la variante entera de dicho problema de maximización (V(PE)<V(P)). También se puede destacar que la solución entera no necesariamente se alcanza al aproximar los resultados fraccionarios de una solución de un problema lineal al entero inferior o superior más cercano. En consecuencia, para abordar de forma eficiente la resolución de un modelo que considere valores enteros para las variables de decisión requiere de una alternativa algorítmica específica como por ejemplo el Método Branch and Bound.

A continuación encontrarás un enlace de descarga del archivo Excel utilizado para la resolución del problema de corte, ensamblado y producción de sillas. En el archivo se incluyen 2 hojas que corresponden a la parte a) y b) del problema propuesto. Produccion de Sillas.