Qué son las Líneas de Espera (Teoría de Colas)

En el artículo Qué es la Ley de Little y su aplicación en el análisis de Líneas de Espera describimos algunos elementos básicos asociados al estudio de líneas de espera como la población de referencia (finita o infinita), distribución de los tiempos entre llegadas (usualmente se distribuyen de forma exponencial, satisfaciendo la Propiedad de Falta de Memoria o Amnesia de la Distribución Exponencial), disciplina del servicio (FIFO, Prioridad, etc), entre otros elementos. A continuación buscaremos ahondar en dichos fundamentos buscando responder ¿Qué son las Líneas de Espera?.

En dicho contexto considere la siguiente pregunta: Un pequeño almacén tiene un solo vendedor que atiende en promedio a 12 clientes por hora (es decir su capacidad es µ=12[/c/h]), atendiendo de un cliente a la vez. La llegada de los clientes al almacén es a una tasa promedio de 10 clientes por hora (λ=10[/c/h]). ¿Hay filas en el almacen? (clientes esperando por su atención). Probablemente muchas personas respondan que no, pero la respuesta correcta es: depende.

linea-de-espera-llegada

Un ejemplo que permite evidenciar lo anterior es el siguiente. Un proceso como el que se describió en la pregunta anterior (almacén) que recibe 12 clientes por hora (λ). La columna Arrival Time detalla el minuto en el cual el cliente llega al almacén (asumamos que estamos evaluando desde las 07:00 a las 08:00, es decir, el primer cliente llega a las 07:00, el segundo a las 07:07 y así sucesivamente). Finalmente la columna Service Time detalla el tiempo que el vendedor se demora en atender al cliente (al calcular el promedio de los valores de dicha columna se observa que es 4,083 minutos, es decir, µ=14,69[/c/h] aproximadamente). Luego la utilización promedio del servidor (vendedor) es ρ=λ/µ=0,8167< 1. Los detalles de este procedimiento se puede consultar en el artículo Cómo calcular la Utilización de un servidor, Tiempo de Espera y Tiempo de Flujo de una Línea de Espera.

llegada-de-clientes

No obstante si analizamos en detalle del proceso de espera anterior podemos observar lo siguiente:

grafico-clientes-en-el-sist

Los clientes 3, 4, 5, 6, 7, 8 y 9 debieron esperar antes de ser atendidos por el vendedor aun cuando la utilización (promedio) del mismo es menor a 1. En el gráfico de barras adicionalmente se observa la cantidad de clientes en el sistema para un instante del tiempo dado (esto considerando tanto el cliente que eventualmente pueda estar siendo atendido más los que eventualmente están esperando por su atención). Por ejemplo a las 07:31 se esta atendiendo al cliente 5 y están esperando en fila los clientes 6, 7 y 8 (es decir, hay 4 clientes en el sistema). Luego la conclusión que podemos generalizar en este caso es:

Si existe variabilidad en las llegadas de los clientes al sistema y/o en las atenciones (tiempos de servicio), entonces hay colas o filas (aunque de largo finito). Esto a pesar de que λ<µ, o sea, de que ρ< 1. Si λ>µ el sistema es inestable (se generan colas infinitas).Dicho de otra modo la existencia de colas o filas en un sistema se deben a la variabilidad y no al hecho de que λ>µ (ρ> 1).

Cálculo del Costo de Mano de Obra por unidad de Producto

Un aspecto clave en todo proceso productivo es estimar los costos asociados a la fabricación de los distintos productos el cual esta compuesto por una sumatoria de distintos costos asociados al abastecimiento de materias primas, energía, insumos y servicios generales, mano de obra, etc. En este contexto en el siguiente artículo discutiremos 2 enfoques para el cálculo del costo de mano de obra (trabajo) por unidad de producto el cual entrega resultados disimiles.

Ejemplo Cálculo del Costo de Mano de Obra por unidad de Producto

Consideremos un proceso simple de fabricación a inventario (make to stock) que consta de 3 etapas secuenciales según se detalla en el siguiente diagrama de procesos y donde en cada etapa trabaja un trabajador que recibe un salario de US$12 la hora.

proceso-costo-mano-de-obra

La capacidad del proceso es de 4[unidades/hora] lo cual esta dado por la Etapa A (cuello de botella), un tiempo de ciclo promedio de 15[minutos/unidad] o equivalentemente 1/4[hora/unidad] y un tiempo de flujo de 30[min]. Una descripción de cómo obtener estos indicadores se puede consultar en el artículo Cálculo del Tiempo de Ciclo, Capacidad de Producción y Tiempo de Flujo de una Línea de Ensamble.

Un enfoque de cálculo para el costo de la mano de obra por unidad de producto es considerar el tiempo de flujo, es decir, el tiempo mínimo que una unidad de producto tarda en pasar por el sistema (etapas A, B y C). En este sentido si el costo de una hora de trabajo es de US$12, entonces 30[minutos] (o 1/2[hora]) cuesta US$12*0,5=US$6,0.

Una alternativa al procedimiento anterior es considerar la capacidad del proceso para prorratear los costos que se incurren cada hora por concepto del trabajo. De esta forma el costo unitario es 12*3[US$/hora]/4[unidades/hora]=9[US$/unidad].

Las diferencias en los resultados alcanzados para los 2 procedimientos se debe al tiempo ocioso o tiempo muerto. En efecto resulta ser un escenario más realista el considerar que se incurre en un costo de US$36 por cada hora (por concepto de salarios) independiente de la utilización de los trabajadores. La siguiente Carta Gantt da cuenta de esta situación donde se puede observar que en particular los trabajadores de las Etapas B y C tienen tiempos muertos de 5 y 10 minutos, respectivamente, por cada unidad de producto terminado. No obstante, al considerar la capacidad del proceso en el cálculo del costo de la mano de obra se asume que el sueldo por hora se paga a todo evento.

carta-gantt-costo-mano-obra

Cómo calcular la Utilización de un servidor, Tiempo de Espera y Tiempo de Flujo de una Línea de Espera

El siguiente artículo aborda de forma práctica cómo calcular algunos indicadores de desempeño básico de un sistema de espera con un único servidor. Entre ellos, la tasa promedio de flujo (λ), la capacidad promedio del servidor (μ), la utilización promedio del servidor (ρ=λ/μ), el tiempo promedio que un cliente esta en la fila esperando ser atendido (Wq) y el tiempo promedio que un cliente esta en el sistema (Ws), esto incluyendo tanto los tiempos de espera como los tiempos de atención.

Considere un proceso de línea de espera que tiene un servidor y una única fila (caja de atención) como el que se describe a continuación. Se opera bajo una regla de prioridad FIFO, es decir, se atienden los clientes por orden de llegada. Los registros tomados para la primera hora de trabajo de un día en particular son los siguientes:

linea-de-espera-1-servidor
tabla-llegada-de-clientes-l

Por ejemplo el Cliente 3 llega exactamente 9 minutos después de iniciada las actividades y una vez que comienza su atención (por el servidor) el tiempo requerido para completar ésta es de 7 minutos. Es decir, el tiempo de flujo de este cliente es de 11 minutos, donde 7 minutos corresponde a la atención en sí y los 4 minutos restantes son los minutos que debe esperar que se desocupe el servidor (que esta atendiendo al Cliente 2). Con este ejemplo queda en evidencia que contar con la información de las primeras 3 columnas se puede completar la información de las columnas restantes.

Ahora desarrollaremos algunos cálculos básicos que permite tener una noción del desempeño de esta línea de espera.

Calcular la tasa de flujo promedio (λ) y la capacidad promedio del servidor (μ): Pasaron 12 clientes por el servicio en 60 minutos, luego la tasa de flujo promedio es λ=0,2[clientes/minuto]=12[clientes/hora]. El tiempo de servicio promedio es 4[min] (corresponde al promedio de los valores de la columna Ws), luego la capacidad promedio es μ=1[clientes]/4[min]=0,25[clientes/min]=15[clientes/hora].

La utilización promedio del servidor (ρ): Esto permite estimar que porcentaje del tiempo en promedio el servidor esta ocupado (atendiendo clientes). En nuestro ejemplo ρ=λ/μ=12[clientes/hora]/15[clientes/hora]=80%. Notar que de este ejemplo sencillo se obtiene una importante conclusión que se puede extrapolar a otros sistemas de espera más complejos:

Si existe variabilidad en las llegadas y/o atenciones, entonces hay colas (aunque de largo finito). A pesar de que λ<μ, es decir, de que ρ<1. Si λ>μ el sistema es inestable (colas infinitas). Es decir, las colas se deben a la variabilidad y no al hecho de que λ>μ (ρ>1).

El tiempo promedio que un cliente pasa en el sector de caja (espera + atención) (Ws): El tiempo promedio que un cliente pasa en el sector de caja corresponde al promedio de los valores de la columna “Tiempo Sistema”: Ws=8[min].

Evalúe si el proceso de llegada es estacionario: Un proceso de llegada es estacionario si el número esperado de clientes que llegan al sistema sólo depende de la longitud del intervalo de tiempo y no del tiempo de inicio del intervalo. Lo anterior por simple inspección no se cumple para el ejemplo. En este sentido se puede apreciar que en la primera media hora de observación han llegado 8 clientes (de un total de 12 clientes en la hora completa). Por tanto el sistema tiene un requerimiento mayor en el primer período de observación.

clientes-acumulados

El gráfico anterior corrobora esta conclusión. Se muestra la cantidad de clientes (acumulados) que han llegado al sistema al cabo de un determinado tiempo. La línea roja mostraría teóricamente el comportamiento de un proceso estacionario, donde un cliente llega exactamente cada 5[min]. La línea azul muestra el comportamiento real del proceso en estudio.